Quantcast
Channel: 深層学習 (Deep Learning) – Preferred Research
Viewing all 45 articles
Browse latest View live

CEATEC2016に出展してきました 〜ドローン編〜

$
0
0

PFNは2016年10月4-6日に千葉幕張メッセで開催されたCEATEC2016で、深層強化学習に基づくドローン(マルチコプター)の自律飛行に関する展示を行ってきました。ドローンの他にもロボットやDIMoに関する展示も一緒に行いました。こちらに関しては関連記事をご参照ください。

ドローンスペースでは実機による自律飛行を披露しただけではなく、説明用のデモ動画を作って上映しました。以下がその動画となります。

 

以下では、この動画よりも少し踏み込んだ内容について知りたい方向けに解説したいと思います。

 

展示内容

ドローンが障害物を避けながらウェイポイント(目的地)に向かって自律飛行をするデモを行いました。
以下の動画が実際に会場で撮影したドローンです。
(上:真上のカメラから見た俯瞰映像、下:横からビデオカメラで撮影した映像)


ドローンは高さのあるところを飛んでいて位置関係が分かり辛いため、俯瞰映像で説明したいと思います。
暗めの青の円がドローンの床面での現在地、赤い矢印がドローンへの移動命令、緑の線がドローンの位置の軌跡を表しています。旗の位置(と丸いスポットライトが照らされている位置)をウェイポイントと呼び、ドローンはここに向かって移動します。また、半透明の旗の位置(と点滅するスポットライトの位置)はその次に通るウェイポイントの位置を表しています。

障害物(床面のLEDバーの赤い光)はある場所に現れたり消えたりします。また、障害物が現れる直前は黄色信号(LEDバー点滅する薄黄色い光)のようにヒントが与えられ、ドローンはそれを見て障害物にぶつからないような経路を選びます。ウェイポイントにドローンがたどり着くと次のウェイポイントに向かって移動する動作を繰り返します。ドローンはウェイポイント、その次のウェイポイント、そして障害物を観測しながら、時間内にたくさんのウェイポイントを周るように自分で経路を考えて飛行します。

 

技術的な背景

以前のCESデモのドローン版であり、今回は模型自動車にくらべて挙動の制御が難しく、リアルタイム性の制約がより厳しいドローンへの深層学習の応用です。深層強化学習を用いてドローンが一から自律飛行を学んで行きます。ここでのタスクは、ランダムに出現するウェイポイントを次々に訪れていくことです。ウェイポイントにたどり着くと報酬が与えられ、障害物にぶつかると罰が与えられます。その経験を学習していくことで次第に賢い行動を取るようになります。

ドローンは非常に複雑な、非線形なシステムです。ドローンの挙動は、4枚のプロペラの回転数によって決められますが、これらの回転数を決めるのは、4kHzのフレームレートでフィードバック制御を行うオンボードコントローラです。このドローンを、ラジコン用の送信機からの電波で制御します。このシステムに、今回のデモではさらにもう1段のフィードバック制御をかけて、ドローンの位置による制御を行います。ドローンの位置推定は、ドローンに取り付けられた位置測定用の赤外線発光ダイオードを、外部の2台のカメラで測定することによって行っています。ドローンの一番外側の制御ループは、2フレーム/秒です。通常、機械の制御は、その機械の挙動を数理的にモデル化して、それに対してフィードバックをかける、という制御理論の考え方に基いて行われます。しかし、今回のドローンのように、物理的要素・デジタル的要素が混在した複雑なCPS (Cyber-Physical System)においては、そもそも全体を数理的に正確にモデル化することは容易ではありません。

一方、人間は試行錯誤をすることによって、徐々にドローンの操縦を覚えていきます。この試行錯誤のやり方を取り入れたのが、深層強化学習に基づく制御です。実際に様々な制御をしてみて、その挙動を見ることによって、「どのような制御入力を与えれば報酬を最大化できるか」を学習していきます。
ただし、その学習は主にシミュレーター上で行いました。実機で学習すると、1) 実時間で学習するため、学習に時間がかかってしまう、2) 特に学習初期は、試行錯誤を行うために安定した学習ができない、という問題があります。しかしながら、ドローンの物理モデルを単純にシミュレーションするだけでは、実機の動きと大きく異なり、シミュレーター上で学習したモデルが全く役に立たないという問題が出てきます。そこで実機の行動ログ(ある制御命令を与えたときにどのような行動をするか)から挙動予測モデルを作り、それをシミュレーターに反映させることで、より精度の高いシミュレーターを作りました。さらに、改善されたシミュレータを使って、強化学習を再度走らせる、という手順を交互に繰り返すことによって、高精度な制御モデルを短時間で生成することに成功しました。この、強化学習による制御入力モデルと、実機ログによる挙動予測モデルを並行して学習させる手法を、私たちはスパイラル学習法と呼んでいます。

今回のデモで使用したドローンは、デモのために用意した自作のものです。デモ会場で長時間耐えられるように有線ケーブルを繋いで長時間安定して動き続けることができます。また、市販のドローンの多くはwifiによる通信で制御しますが、展示会場ではwifiは混線してつながらないことが多いため、ラジコン用無線で制御できるようにしました。ドローンは位置型のPID制御(かなり大雑把に説明すると、ある位置を指定したとき、そこに近づくように飛行速度を調整する制御で、自身よりも遠くの位置の場合は速く、逆に近い場合はゆっくり移動するようにするフィードバック制御)で動作し、強化学習アルゴリズムはマップ全ての位置を行動として選択できます。

今回のデモでは、強化学習による制御を中心にお見せしたかったため、ドローンの位置の推定や、ウェイポイント、障害物の位置指定はすべて外部のPCによって行いました。強化学習アルゴリズムに対しては、障害物の位置はシミュレートされた32本のLIDARによって与えられます。適切なセンサーと、十分なオンボードの計算パワーがあれば、これらの処理をすべてオンボードで行わせることも可能と考えています。

 

これまでのドローン制御とは異なる点

ドローンの制御は研究から実用化まで幅広く行われていますが、そのほとんどは、制御理論に基づくモデルベースの制御を行っていると考えられます。このデモでは、低レベルの制御をモデルベースで、高レベルの制御を深層強化学習で行う、というハイブリッド制御を行っています。強化学習によるアプローチを取っているため、1) 低レベルの制御を含めた系全体をブラックボックスとして扱うことができる、2) ルールベースによる実装では想定していなかった不測の事態にも対応可能、というメリットがあります。また、問題設定が多少変わっても学習のコードを大きく書き直す必要はありません。

 

まとめ

今回、ドローンのような非常に複雑なシステムを制御することに挑戦しました。CES2016での模型自動車の展示では人手でシミュレーターを作成していましたが、今回は実機の飛行ログから挙動予測モデルを学習させ、シミュレーターと実機の差を吸収するというアプローチを行いました。これによってシミュレーターのチューニング作業に時間をかけずに制御入力モデルの学習を行うことができました。また、従来のモデルベースの制御をブラックボックスとみなして、深層強化学習で高レベルな制御を行うハイブリッド制御の知見を得ることができました。これらの技術はドローンに限らず、建設機械や航空機など、複雑なCyber-Physicalシステムの自律制御にも応用可能だと考えています。

 


CEATEC2016に出展してきました 〜ロボット編〜

$
0
0

PFNは2016年10月4-6日に千葉幕張メッセで開催されたCEATEC2016で、スマートピッキングロボットおよびバラ積みロボットの展示を行ってきました。ロボットの他にもドローンやDIMoに関する展示も一緒に行いました。こちらに関しては関連記事をご参照ください。

以下では、もう少し詳細な解説をしたいと思います。

展示内容

我々PFNが今年の7月に参加したAmazon Picking Challenge 2016で用いたピッキングロボットに改良を加えたスマートピッキングロボットと、バラ積みロボットを用いたキャンディ配りロボットを展示しました。

スマートピッキングロボットは、UIで指定されたアイテムを棚からカゴへ取ったり、
逆にカゴから棚にアイテムを戻すことができます。また、全自動で連続運転する自動モード機能やドローンと連携してアイテムを運搬するといった機能も開発しました。

 

スマートピッキングロボットの概要%e3%83%ad%e3%83%9b%e3%82%99%e3%83%83%e3%83%88bolg_0

 キャンディ配りロボットはPFNオリジナルキャンディを、バラ積みロボットを用いて来場者の方に配布しました。

キャンディ配りロボット概観
candy

 

技術的な背景

  • スマートピッキングロボット

今回展示したピッキングロボットはディープラーニングを用いて、カラーカメラ及びデプスセンサの情報から「どこにどのアイテムが有るのか」「どこにロボットアームでアプローチすれば取れるのか」をそれぞれ学習させています。

今回のタスクは複数の物体が乱雑に置かれており、物体が他の物体に隠れる様なオクルージョンが多く、布やビニールのような変形する物体も含まれており、古典的な画像処理手法では対処が難しい問題です。我々は、ディープラーニングを用いたSemantic Segmentationという手法をベースにすることで、このような難しい環境下でも高精度に動作するシステムを実現しました。

「どこにどのアイテムが有るのか」という課題に対しては、今回は30種類のアイテムを事前に学習させた、17層のCNNを作りました。このCNNは入力画像の各ピクセルに対し、そこがどの物体に属するのかを予測することが出来ます。これにより、どの領域にアームを持っていけば、目標の物体に当てられるかが判断できます。

次に、目標物体の領域の内どこが「取れる」領域(平らな面など)で、どこが「取れない」領域(箱の角など)なのかを判断する必要があります。そこで、「どこにアプローチすれば取れるのか」もCNNに学習させました。このCNNは「手前に物体があるので取りにくい」といった複雑な判断も、ある程度学習しています。これにより、指定されたアイテムが直接取れない場合は他のアイテムを先に取り出してから目的のアイテムを取り出すといった事が可能になります。

学習にはGPUを用いて一日程度の時間をかけています。また学習には数万枚の画像データを用いましたが、データの学習方法を工夫することで、画像データに人間が詳細なアノテーションをしたのはそのうち数百枚程度に抑える事ができました。

 

ディープラーニングを用いたアイテムの認識と取れる位置の認識

%e3%83%ad%e3%83%9b%e3%82%99%e3%83%83%e3%83%88bolg_1

 

  • キャンディ配りロボット

以前開発したバラ積みロボットの0から学習は学習データを実機で収集していましたが、今回のキャンディ配りロボットでは、画像から人間が取れそうな位置を教える事でバラ積み取り出しが出来る技術を用いています。こちらも人間によるアノテーションの労力は抑えつつ、9割を超える高いピッキング能力を学習させることが出来ました。

ディープラーニングを用いたキャンディの取れる位置認識%e3%83%ad%e3%83%9b%e3%82%99%e3%83%83%e3%83%88bolg_2

 

まとめ

今回、ピッキングをテーマにAmazonPickingChallengeに参加したロボットとバラ積み取り出しロボットを展示しました。ピッキングはロボティクスにおいて非常に重要な課題であり、既に実用化されているバラ積みロボットから、最先端の課題と言えるAmazonPickingChallengeまで、幅広い問題領域があります。我々は機械学習技術を用いたピッキング技術の高度化に取り組むことで、ロボットの応用範囲を広げて行けると考えております。また、ロボティクスの発展は少子高齢化の進む日本において、大きな社会貢献につながる事と思います。

2016年夏季インターンシップ開催報告

$
0
0

PFI・PFNでは今年8, 9月に夏季インターンとして14名の方に来て頂き、機械学習・深層学習に関する様々なプロジェクトに取り組みました。このブログエントリでは、PFI・PFNのインターンシッププログラムの概要と、今年のインターンシップ、特に最終成果発表会についてを紹介します(写真は中間発表のポスター発表の様子です)。

2016%e3%82%a4%e3%83%b3%e3%82%bf%e3%83%bc%e3%83%b3%e4%b8%ad%e9%96%93%e7%99%ba%e8%a1%a8

PFI・PFNのインターンプログラムについて

PFI, PFNでは、2010年からインターンシップを実施しています(PFNは2015年から)。夏季のインターンシップは毎年行っており、また毎年ではありませんが、春季にもインターンを実施しています。PFI・PFNのインターンシップの特徴として、8, 9月の2ヶ月間と比較的長期であること、インターンで行うプロジェクトのテーマに精通している社員がメンターにつき一緒にプロジェクトを進めていくこと(大抵の場合1人の学生に対してメンター2人)、インターン中の成果は論文やOSSなどの形で可能な範囲で公開できることなどが挙げられます。

準備に関しても4月から募集要項の作成を進めており、春季インターンも含めると、1年のうち半分以上はインターンに関して何らかのプロジェクトが動いていることになります。PFI・PFNがここまでインターンシップに力を入れている理由として、インターンを行った後に社員としてPFNに来ている方がメンバーとして活躍していること、社員の側もインターンで来ていただく学生の方々から最新の研究について学んでいること、インターンでのプロジェクトが学生の方の研究・学業にも直接的・間接的に役に立っているという自負があることなどが挙げられます。

選考は書類審査・コーディング審査・面接審査で実施しております(選考方法に関しては今後変更になる可能性は十分あります)。コーディング試験に関しては別のブログエントリにて、過去の選考で出題した課題を公開しておりますのでご参照ください。選考では、本人の興味・研究分野・得意な技術などを考慮し、指導できるメンターとの間でマッチングを行います。幸いなことに、PFI・PFNでのインターンを希望していただける方は多く、また、皆さん優秀な方が多いので、毎年選考には頭を悩ませています(そして、大体毎年想定以上の人数を採用してインターン期間中はてんやわんやになります)。今年の募集要項は過去のNewsをご参照ください。

今年の夏季インターンについて

PFNが事業を拡大し、人数面・設備面でキャパシティが増えたことで、今年の夏季インターンでは14人と例年以上に多くの方に参加していただきました(倍率としては例年と同等程度でした)。今年4月にオフィスを本郷三丁目から大手町に移転した時には空席がたくさんあると思っていたのですが、実際にインターンを開始したら、危うく席が足りなくなりそうになり、若干ヒヤヒヤしました。

インターンシップの募集する際に、大まかなテーマは設定していますが、具体的にどのようなテーマで行うかは採用後にインターン生とメンターとの間で議論を行い、プロジェクトの方向性を決めていきます。今年のテーマは以下の通りです。どのプロジェクトでも関しても異常検知・強化学習・深層生成モデルなどに関する最先端のテーマに取り組んでいただきました。

  • 対話における商品の営業
  • Automatically Fusing Functions on CuPy
  • Generation of 3D-avatar animation from latent representations
  • Response Summarizer: An Automatic Summarization System of Call Center Conversation
  • Imitation Learning for Autonomous Driving in TORCS
  • 3D Volumetric Data Generation with Generative Adversarial Networks
  • DQN with Differentiable Memory Architectures
  • Anomaly Detection by ADGM / LVAE
  • Multi-modal Deep Generative Model for Anomaly Detection
  • CNN based robotic grasping for randomly placed objects by human demonstration
  • Bayesian Dark Knowledge and Matrix Factorization

今年の新しい試みとして、中間発表・最終発表を従来の口頭発表形式から、ポスター形式に変更しました。また、最終発表は一般公開し、外部の方も参加していただけるようにしました。発表をポスター形式にしたことで、インターンの学生の方たちがPFI, PFN社員やお客さんと双方向の議論が出来たのはよかったのではないかと思います。最終発表会は当初2時間を予定していましたが、終了時間が過ぎても活発に議論が続いていました。最終発表会当日のポスターはリンク先のconnpassページにまとめておりますので、是非ご覧になってください(発表資料は順次追加していきます)。

今後のインターンシップに関して

PFNでは(私がPFN所属なのでこのような主語を置きます)来年以降も夏季インターンシップを実施する予定で、募集要項は4月頃に掲載する予定です。また、PFNでは、春季インターンなどの通年インターンシップやアルバイトも随時実施しております(通年でのインターンシップはまだ仕組みが整備されていないため、受け入れられる数が限定されていますが、HPへの募集要項の掲載などの準備を進めています)。PFI・PFNでのインターンシップやアルバイトに興味のある方は是非ご一報いただければと思います。

深層強化学習ライブラリChainerRL

$
0
0

Chainerを使った深層強化学習ライブラリChainerRLを公開しました. https://github.com/pfnet/chainerrl

PFNエンジニアの藤田です.社内でChainerを使って実装していた深層強化学習アルゴリズムを”ChainerRL”というライブラリとしてまとめて公開しました.RLはReinforcement Learning(強化学習)の略です.以下のような最近の深層強化学習アルゴリズムを共通のインタフェースで使えるよう実装してまとめています.

A3CでAtari 2600のゲームをプレイするexampleや,

DDPGでヒューマノイドロボットの制御を学習するexampleなどがあります.

以下では簡単にChainerRLの使い方を説明します.

まず,強化学習を使って問題を解くには,解きたい問題(”環境”と呼びます)をしっかり定義する必要があります.環境の定義の仕方は,OpenAIが公開している強化学習ベンチマーク環境のGym(https://github.com/openai/gym)のインタフェースに従っています.Gymの環境で動かすこともできますし,インタフェースを揃えればオリジナルな環境で動かすこともできます.基本的にはresetとstepという2つのメソッドが実装されていれば十分です.

env = YourEnv()
# reset は環境をリセットして現在の観測を返す
obs = env.reset()
action = 0
# step は環境にアクションを送り,4つの値(次の観測,報酬,エピソード終端かどうか,追加情報)を返す
obs, r, done, info = env.step(action)

深層強化学習では,状態から行動を決める方策(Policy)や,状態や行動の価値を予測する価値関数(V-function,Q-function)をニューラルネットで表現し,そのパラメータを学習します.ChainerRLでは,これらは単に__call__を実装したChainerのLinkとして表現されます.

class CustomDiscreteQFunction(chainer.Chain):
    def __init__(self):
        super().__init__(l1=L.Linear(100, 50)
                         l2=L.Linear(50, 4))
    def __call__(self, x, test=False):
        h = F.relu(self.l1(x))
        h = self.l2(h)
        return chainerrl.action_value.DiscreteActionValue(h)

class CustomGaussianPolicy(chainer.Chain):
    def __init__(self):
        super().__init__(l1=L.Linear(100, 50)
                         mean=L.Linear(50, 4),
                         var=L.Linear(50, 4))
    def __call__(self, x, test=False):
        h = F.relu(self.l1(x))
        mean = self.mean(h)
        var = self.var(h)
        return chainerrl.distribution.GaussianDistribution(mean, var)

このように作ったモデルやChainerのOptimizer,アルゴリズムごとに必要な引数を渡して”エージェント”を作ります.エージェントは環境とのインタラクションを通じてデータを集めながらモデルの学習を行います.

q_func = CustomDiscreteQFunction()
optimizer = chainer.Adam()
optimizer.setup(q_func)
agent = chainerrl.agents.DQN(q_func, optimizer, ...)  # 残りの引数は省略

エージェントを作ったら,自分で学習ループを書いて動かすか,

# Training
obs = env.reset()
r = 0
done = False
for _ in range(10000):
    while not done:
        action = agent.act_and_train(obs, r)
        obs, r, done, info = env.step(action)
    agent.stop_episode_and_train(obs, r, done)
    obs = env.reset()
    r = 0
    done = False
agent.save('final_agent')

あるいはあらかじめ用意されている学習用関数に渡せば学習が行なえます.

chainerrl.experiments.train_agent_with_evaluation(
    agent, env, steps=100000, eval_frequency=10000, eval_n_runs=10,
    outdir='results')

とりあえず動かしてみるためのクイックスタートガイドを用意しました. https://github.com/pfnet/chainerrl/blob/master/examples/quickstart/quickstart.ipynb

ChainerRLはまだベータ版ですが,強化学習に興味がある方はぜひ試してもらってフィードバックをいただけるとありがたいです.ライブラリとしての使いやすさや,新しいアルゴリズムの追加など,今後も改善を続けていこうと思います.

深層強化学習による自動駐車の実装

$
0
0

初めまして! PFN でアルバイトをさせてもらっている芝慎太朗です。普段は東京大学大学院で行動神経科学の研究をしています。僕が去年取り組んでいた、「車が自ら駐車場に向かい停止する」自動駐車プロジェクトについて報告します。まずはこちらのアニメーションをご覧ください。(アニメーションがうまく再生されない場合は画像をクリックしてください)

We implemented self-driving car that parks itself using deep reinforcement learning. The English slide is available at SlideShare!

背景

深層強化学習は、2015年から非常に注目され始めた人工知能技術であり、深層学習と強化学習を組み合わせたものです。深層強化学習によって、それまでできなかったような複雑なタスクにおいてもコンピューターが人を上回り始めました。プロ棋士を破ったことで一躍話題になった Google DeepMind による囲碁の人工知能 AlphaGo もこの技術を使っています。最近では スマッシュブラザーズにおいても威力を発揮し 話題になりました。

深層強化学習は制御タスクとの相性がよく、実際に PFN でもぶつからない車の自動運転ドローンの制御などに成功してきました。

PFN が CES 2016 で展示した自動運転(参照)では、アルゴリズムとして深層強化学習ブームの火付け役となった Deep Q Network(以下DQN)を用いています [Mnih et al., 2015]。ニューラルネットワークへの入力は、LIDAR(wikipediaによる解説)を模した近接物への距離と角度センサー、直前の行動、現在の車のスピードとステアリング(ハンドルの曲がり具合)でした。

しかし自動運転技術を現実に応用することを考えると、一般に距離センサーよりもカメラの方が安価という特徴があります。一方で、距離の計算が必要になるためカメラ画像の方が制御は難しくなると考えられます。実際、つい最近も ブラウザ上で動作するような簡単な自動運転デモ が公開されたばかりですが、これも距離センサーを使用しており、使用しているニューラルネットは3層程度の簡易なものです。
距離センサー・カメラそれぞれに得意・不得意な状況や利点・欠点があるので一概にどちらを用いるべきとは言えませんが、いずれにせよ、距離センサーに頼らずカメラ画像のみを用いて車を制御するようなアルゴリズムの研究開発は非常に重要です。

本プロジェクト

このプロジェクトでは、距離センサーではなく、車に取り付けられたカメラによる主観的な画像の入力によってend-to-endのアルゴリズムで車を制御できないか、ということに挑戦しました。具体的なタスクとして選んだのは駐車です。すなわち、車を駐車スペースに移動して停止させます。

アルゴリズムとしては DQN の改善版である Double DQN を使用しました。Double DQN は行動価値の見積もり値である Q 値の過大評価を防ぎ、ニューラルネットの発散を防ぐことで学習を安定させるという特徴があります [Hasselt et al., 2015]。詳しくは解説スライド(この投稿の最後にリンクが貼ってあります)や元論文をご覧ください。

まずは環境の定義です。今回は実機や既存のシミュレータを使用せず、簡単な車の物理シミュレータを自分で実装しました。このシミュレータはアクセル、ブレーキ、ハンドルの曲がり具合を受け取り、牽引力、空気抵抗、転がり抵抗、遠心力、制動力、コーナリング力を計算し、車の位置、速度、加速度を更新します。車や駐車スペースの大きさと、車が探索できる地面の範囲なども定義しました。次の図は、シミュレーションされた環境を上から見た俯瞰画像です。黒い長方形が駐車スペース、赤と黄色の長方形が車(黄色が前)になります。


次にエージェントへの入出力を定義します。エージェントは環境の状態を入力として受け取り、アルゴリズムにしたがって適切な行動を選択します。現実世界に例えるなら車に乗っている人に相当するでしょう。行動はアクセル、ブレーキ、ハンドルを左右に曲げることの組み合わせで全部で9種類用意しました。状態としては、環境を車から見た主観画像と、現在の車のスピードとステアリング(ハンドルの曲がり具合)を使用しました。つまり、車の現在位置や駐車スペースまでの距離を直接知ることはできません。

主観画像は、車を中心に3方向または4方向に設置されたカメラ画像を用意し、車の周りをぐるりと見渡せるようにします。次の画像はカメラが4台の場合の主観画像です。画像の大きさはニューラルネットに入力する直前で 80 x 80 に縮小します。わかりやすいように中心に先ほどと同様の俯瞰画像を載せました。


エージェントは、画像の入力に合わせて適切な行動を選択し、車を駐車スペースに導いてそこで停車することが求められます。状態がカメラ台数分の画像と、画像でないパラメータ(現在の車のスピードとステアリング)からなるため、ニューラルネットの構造を工夫して以下のようにしました。この図はカメラが3台の場合に使用されたニューラルネットワークです。図中の Convolution とは、画像を処理するための畳み込みニューラルネットを示します。


最後に報酬を定義しておきます。「車が駐車スペースに向かい、その中で停止する」、すなわち「車ができるだけ長く駐車スペースの内側にいる」ことを学習するような報酬の与え方を考えます。いろいろな設定を試しましたが、最終的に

  • 車が駐車スペースの内側にいる場合、+1
  • 車が地面の外にいる場合、-1
  • その他の場合、0.01 – 0.01 * ゴールまでの距離

というふうに設定してみました。
その他の細かい設定や、他に試した報酬の設計などは末尾のスライドをご覧ください。

結果

GeForce GTX TITAN X 上で約一週間ほど学習を回し続けた結果、冒頭で示したように、車が自動で駐車スペースに向かい停止するように学習できました。次のアニメーションは冒頭と同じもので、左が車の軌跡、右が実際にニューラルネットワークに入力された画像です。

しかしながらやはりタスクの難しさもあって、このまま学習を続けていくと車が地面をぐるぐる回り続けたり、パラメタによっては学習途中でニューラルネットの出力が発散してしまったりという場合もありました。こちらも詳細はスライドを見ていただければと思います。


考察

深層強化学習を用いて、主観画像の入力から自動駐車を学習できました。画像を入力して車を制御するのは、距離や角度のセンサーよりも一段階難しいタスクです。実は、このプロジェクトも距離などを入力にして学習させるところから始めました。距離を直接入力した場合には安定してすぐに学習できたものの、主観画像では Q 値の発散や、うねうねと動き続ける車が誕生したりとなかなか安定しませんでした。

原因として考えられることの1つに、畳み込み層で車や駐車スペースの場所がうまく検出しきれていない可能性があります。先にCNNから位置を回帰するような事前学習をおこなってその重みを初期値として使うことや、一度 CNN 部分の出力を可視化してみることも有用でしょう。

また学習を安定させるために、アルゴリズムの変更も効果的かもしれません。例えば A3C [Mnih et al., 2016] や TRPO [Schulman et al., 2016] を使ってみたり、モンテカルロ法と組み合わせた学習などは試す価値があると考えられます。

実際にはいきなり始めから主観画像を入力したわけではなく、上で少し述べたように、簡単なタスクから徐々に難しくしていました。また、報酬の設計を変更しつつ、駐車スペースの位置や車の初期設定を変えながらカリキュラム学習をしたりと細かい実験を試しています。これらの詳細が知りたい方は上記のスライドを見ていただければと思います。

まとめ

本プロジェクトの結果はまだ様々な状況で完全に対応できるものではありませんが、深層強化学習によってカメラ画像のみで自動駐車が実装できる可能性を示したものだと言えます。今後の方向性としては、学習アルゴリズムを変更して学習を安定させたいです。シミュレーションだけではなく、実機でも実現できれば非常に面白いと思います。

僕は現在も他のプロジェクトに取り組みながらアルバイトを続けています。初めからプログラミングや強化学習ができたわけではなく、自分で勉強しつつ、わからないところをメンターに教えていただきながら、大変恵まれた環境で進めることができたプロジェクトでした。学生の皆さんも興味があればアルバイトやインターンに積極的に飛び込んでいってみてはいかがでしょうか。

人工知能技術の健全な発展のために

$
0
0

4月10日の日経ITproの記事「 AIベンチャーの雄が総務省の開発指針に反対する理由」で、総務省主導で推進されているAIネットワーク社会推進会議とその開発原則分科会からPFNが離脱したことを、取り上げていただきました。私とのとりとめのないインタビューを適切にまとめてくださった日経ITpro浅川記者に深く感謝いたします。また、その記事に対して、はてなブックマーク、NewsPicks、FacebookなどのSNSを通して多くのコメントを下さった方にも感謝の意を表します。ありがとうございます。離脱の理由は記事にある通りですが、総務省の方々も私達の立場を真摯に受け止めてくださっていて、実りのある議論を続けてくださっています。その上で、今後の議論を深めるために、いくつかの点について補足したいと思います。

汎用人工知能と特化型人工知能

現在、人工知能という言葉は大雑把には、

  • 汎用人工知能(「強い」人工知能とも呼ばれ、自意識・創造性などあらゆる面で人間と同等以上の知性を示す、いわゆる「人工知能」)と、
  • 特化型人工知能(ある特定のタスクで知性を示すソフトウェア、あるいはそれを組み込んだ自動機械)

のどちらかまたは両方を指す言葉として使われています(より詳細には、様々な知能の定義があり、百人いれば百通りの定義があるようです)。文脈によってどの意味であるかが明確であればよいですが、そうでないと混乱の元になります。

汎用人工知能がいずれ実現することは間違いないでしょう。汎用人工知能が社会に与えるインパクトは計り知れず、そのために私達の社会がどのように準備しておくべきか、今から議論することには大変意味があると思います。しかし、汎用人工知能が実現可能になるまでには、まだいくつもの未解決問題を解かねばなりません。過去約60年にわたる人工知能の研究において、探索、推論、知識表現など多くの技術革新がありました。最も最近のブレークスルーは深層学習です。これら様々な革新的な技術の積み重ねがあるにもかかわらず、汎用人工知能の実現は、今見えている技術の延長上には無い、というのが私達の認識です。

汎用人工知能の実現が、人工知能研究の究極のゴールだとすれば、特化型人工知能は機械をより知的にするための営みから生まれてきた技術だといえるでしょう。「より」知的という意味は、それまでは機械にできないと思われていたことができるようになる、ということです。初期の人工知能研究では、例えば手段目標分析(means-ends analysis)という探索技法が盛んに研究されました。これは数学の定理証明など「高度に知的な」問題を解くのに用いられ、当時の人工知能の成功例とされましたが、今では乗換案内における探索アルゴリズムなどに実装され、日々使われている手法です。他にもコンパイラに使われる形式言語理論、オブジェクト指向やモデリング言語に使われる概念階層など、人工知能研究から発生した手法は、現在では多くのシステムの中で道具として使われています。すなわち、特化型人工知能とは「その時代における情報技術の最先端を指す言葉」と捉えてもよいでしょう。その意味では、最近注目を浴びている深層学習も、いずれは日々のプログラミングの中で当たり前のように使われる道具になっていくでしょう。特化型人工知能とは、自動車や洗濯機などと同様、道具に過ぎないのです。

深層学習の持つポテンシャル

その一方で、PFNが注力している深層学習は情報技術の世界を大きく変えてしまうポテンシャルがあると、私達は考えています。それは、応用領域の爆発的拡大と、そもそも情報システムのあり方の革新に現れてきます。

深層学習の技術は、当初は画像認識において、高い認識精度を得たことで注目を浴びました。現在では、音声認識や機械翻訳においても広く使われるようになってきているのはご承知のとおりです。PFNでは、深層学習を特にIoTなど物理世界との接点で応用しようとしています。自動運転のための画像認識バラ積みロボットの学習深層強化学習による自動運転、同じく深層強化学習によるドローンの制御深層生成モデルによる異常検知がんの診断などは、今までPFNが深層学習の応用を試みて成功してきた分野です。また、最近話題になったものとして、線画の自動着色があります。しかし、これらは氷山の一角に過ぎません。深層学習の応用分野はこれからも爆発的に増えていくと考えています。特に、産業用機器の制御など組み込み分野では、より高い精度、より高度な制御を行うために今後は深層学習を使わないシステムは考えにくくなってくるでしょう。

深層学習は同時に、ハードウェアからシステム開発の方法論、さらには業界のエコシステムまで、情報システムそのもののあり方も変えていきます。1990年代からつい最近にいたるまで、コンピュータといえばほとんどがインテルのx86アーキテクチャに基づくものでした。一方、現在深層学習を使っている多くの企業は、GPUを使っています。PFNでも、石狩にあるさくらインターネットのデータセンターに、数百個規模のGPUクラスタからなる計算基盤を構築していただいて、これを日々使っています。しかし、私達はGPUが究極のアーキテクチャとは考えていません。これから多くのハードウェアのイノベーションが起きるでしょう。

プログラミングモデル、あるいはソフトウェアのレイヤでは、「深層学習フレームワーク」という技術が群雄割拠でしのぎを削っている段階です。PFNでもご存知の通り深層学習フレームワークChainerを開発していて、これはNVIDIA、Intel、IBMなど主要なITベンダーにサポートされていますし、世界で戦える技術だと自負しています。このようなフレームワーク、すなわち深層学習に基づくプログラミングモデルを使いこなせることが、これからのITエンジニアの必須スキルとなることでしょう。

さらに今後、

  • 深層学習を用いたシステム開発のための方法論、すなわちお客様の要求をどのように深層学習の問題として表現し、訓練データや学習環境を用意し、評価やデバッグを行い、運用するかという知識体系(今までのソフトウェア工学に代わる体系)、
  • 深層学習によって作成される学習済みモデルの知的財産の保護、
  • あるいはシステム開発や学習済みモデルをめぐる新しいビジネスのエコシステム

など、情報技術の現在の常識が、すべての局面において大きく変わっていくことでしょう。

人工知能技術の健全な発展のために

「人工知能」という言葉がひとり歩きする中で、人工知能に対する過度な期待と、その裏返しである脅威論が、多くの人々の判断を歪ませているように思います。私たちは、今の技術がどのレベルにあり、どのような発展が想定されているかを正しく理解し、その知識に基づいて社会がどうあるべきかを議論しなければなりません。

深層学習が世の中を大きく変えていく中で、私達が世界の中で競争力を失わずに、なおかつ人類社会の発展に貢献するために何ができるのか、私達人工知能技術に携わるものが、その現状と展望を正しく発信するように、戒めていきたいと思います。

 

分散深層学習パッケージ ChainerMN 公開

$
0
0

Chainer にマルチノードでの分散学習機能を追加するパッケージ ChainerMN のベータ版を公開しました。

ChainerMN とは

ChainerMN は Chainer の追加パッケージで、Chainer を用いた学習を分散処理により高速化できます。柔軟で直感的に利用できる Chainer の利便性をそのままに、学習時間を大幅に短縮できます。1 ノード内の複数の GPU を活用することも、複数のノードを活用することもできます。既存の学習コードから数行の変更で ChainerMN を利用可能です。ChainerMN は既に社内の複数のプロジェクトで実証が行われています。

Chainer を用いた通常の学習における 1 イテレーションは下図のように Forward, Backward, Optimize の 3 つのステップからなります。

ChainerMN はこれに、下図のように、通信を行う All-Reduce のステップを挿入します。All-Reduce のステップでは通信を行い、全ワーカーが Backward で求めた勾配の平均を計算し全ワーカーに配ります。Optimize のステップでは、この平均の勾配が利用されます。全ワーカーは学習開始後は常に同じパラメータを持ちます。

下図は以前に行った大規模ベンチマークの結果です。ChainerMN で 128 GPU を利用し画像分類の学習を約 100 倍高速化することができました。詳しくはこちらの記事をご覧ください。

利用方法の概要

以下、ChainerMN の利用方法の概要を紹介します。詳しくはドキュメントをご覧ください。

セットアップ

ChainerMN をインストールする前に、CUDA-Aware MPI, NVIDIA NCCL のセットアップが必要です。

CUDA-Aware MPI

ChainerMN は MPI を利用しており、MPI は CUDA-Aware 機能が利用できる必要があります。CUDA-Aware 機能をサポートするオープンソースの MPI には Open MPI, MVAPICH などがあります。以下は Open MPI を CUDA-Aware でインストールする例です。

./configure --with-cuda
make -j4
sudo make install

複数ノードで利用する場合、InfiniBand 等の高速なインターコネクトの利用を推奨します。

NVIDIA NCCL

NCCL はノード内の GPU 間の集団通信を高速に行うためのライブラリです。こちらを参考にビルド・インストールし、環境変数を適切に設定して下さい。

ChainerMN

ChainerMN は pip よりインストールできます。

pip install chainermn

 

学習コードの変更

ChainerMN を利用した分散学習を行うためには、既存の Chainer による学習コードに変更を加える必要があります。ドキュメント内のチュートリアルでは順を追ってこの手順を説明しています。

以下では、そのうちの最も重要なステップである、コミュニケータの作成と、オプティマイザの置き換えについて説明します。

コミュニケータ

コミュニケータは以下のように作成します。

comm = chainermn.create_communicator()

通信はこのコミュニケータを通じて行います。コミュニケータからは、参加しているワーカー数や自分がその何台目か(rank と呼ばれます)などの情報を得ることができます。

オプティマイザ

ChainerMN は Chainer のオプティマイザを置き換えることによりワーカー間の通信処理を挿入します。以下は通常の Chainer のコードで Adam のオプティマイザを作成している部分です。

optimizer = chainer.optimizers.Adam()

ChainerMN では、以下のように create_multi_node_optimizer 関数を呼び出して、通信処理が追加されたオプティマイザを作成します。

optimizer = chainer.optimizers.Adam()
optimizer = chainermn.create_multi_node_optimizer(optimizer, comm)

create_multi_node_optimizer によって作成されたオプティマイザは、通信処理が追加されている以外は通常のオプティマイザと同様に扱うことができます。

実行

mpiexec または mpirun コマンドを用いて学習スクリプトを起動します。以下は localhost 内で MNIST example を 4 プロセスで起動する例です。

mpiexec -n 4 python train_mnist.py

終わりに

以上、ChainerMN の利用法を駆け足で紹介しました。かなりの部分を省略しているので、実際に利用される際にはドキュメントを見て頂ければと思います。

ChainerMN は今後、通信と計算のオーバーラップ、ワーカー間の非同期な計算、勾配の圧縮による通信効率化、耐障害性などの課題に取り組み、改善を続けていく予定です。

ニューラルネットの逆襲から5年後

$
0
0

私が2012年にニューラルネットの逆襲当時のコメント)というのをブログに書いてからちょうど5年が経ちました。当時はまだDeep Learningという言葉が広まっておらず、AIという言葉を使うのが憚られるような時代でした。私達が、Preferred Networks(PFN)を立ち上げIoT、AIにフォーカスするのはそれから1年半後のことです。

この5年を振り返る良いタイミングだと思うので考えてみたいと思います。

 

1. Deep Learning Tsunami

多くの分野がこの5年間でDeep Learningの大きな影響を受け、分野特化の手法がDeep Learningベースの手法に置き換わることになりました。NLP(自然言語処理)の重鎮であるChris Manning教授もNLPで起きた現象を「Deep Learning Tsunami」[link] とよびその衝撃の大きさを表しています。

その適用範囲は最初想定されていた画像認識、音声認識分野だけにとどまらず、機械翻訳、生物情報処理、最適化、ロボティクスなど多岐にわたっていきました。

 

2. Deep Learning Frameworkの登場

2012年当時はDeep Learningの研究開発をしようと思った時、使える代表的なライブラリはTorchとTheanoしかありませんでした。その後、2013年末にYanqing Jiaが博士論文を書く過程で作ったCaffeが登場し、2015年6月には弊社PFNからChainerを発表、2015年9月にはGoogleからTensorFlowがリリースされます。その後も各会社がそれぞれのDeep Learning Frameworkを発表していきました。

Chainerは開発者の得居がGW明けに突然作ってきて、使ってみると簡単にかけるものだと驚いたのを覚えています。それまではC++やGoで書いていたのですが、その時とは雲泥の差でした。numpyをはじめとしたpythonの強力な数値計算/データ解析用ライブラリ群の力も合わせpythonによりDeep Learningの研究開発をする流れが急速に広まりました。

また、Chainerが最初に唱えたDefine-by-Runの考え方はコミュニティに受け入れられ、その後PyTorchやTensorFlow Eager execusionなどでも採用され影響を与えていきました。

今ではPythonで数十行から数百行コードを書くだけで、複雑なネットワークを持ったモデルを分散学習することができ、CPU、GPUどちらであっても気にせず、簡単に書くことができます。

 

3. 強化学習との融合

深層学習は強化学習と融合し、大きなブレークスルーをもたらしました。DQNによりAtari2600の様々なゲームが人間と同レベルでプレイできるように学習できることが大きな話題となりました。

元々強化学習は、教師あり学習とは違って、環境からのスカラー値の報酬のみで複雑な制御を獲得できる有望な手法でした。さらに深層学習により価値関数や方策(状態に応じてどの行動を選択するか)の表現力が大きく上がると、これまで困難と思われた問題を次々解けるようになりました。その中でもAlphaGo[オリジナル, AlphaGo Zero]がトップ棋士をやぶったことは大きなマイルストーンとなりました。

弊社もCES2016で強化学習を利用したロボットカーの自動運転のデモンストレーションなどでその可能性について世の中に示していきました[link]

強化学習は未だに学習、利用ともに様々な課題がありますが急速に研究が進んでおり今後ますます重要になるでしょう。最近の強化学習については、Deep RL Bootcampの資料などが参考になるでしょう。

 

4.  研究の爆発

DNNは最初は限られた研究グループのみが研究成果をあげていましたが、現在は世界中の企業、研究グループが次々と研究成果をあげるようになっています。どこの国や地域、企業でもいいアイディアさえあれば、すぐに大きなインパクトをあげられるようになっています。

これにはarxivなどのオープンジャーナルが大きな役割を果たしています。以下にarxivの関連カテゴリ(cs.AI,cs.LG,cs.CV,cs.CL,cs.NE,stat.ML)への投稿数のグラフをあげます[link より図を引用]

これまで研究は国際学会やジャーナル論文が中心でしたが、いつでも誰でも投稿できるオープンジャーナルが登場し、研究プロセスは非常に加速されました。発表された論文が数日後に別の論文で引用されることも珍しくありません。

また、論文と一緒に実験用コードをgithubなどで公開することで、さらに知識の共有が進むようになりました。

一方、オープンジャーナルでは査読がなく論文は玉石混交となり、質が下がるという危惧はあります。しかし注目された研究はすぐに世界中で追試がされチェックされ、怪しいところがあるとRedditなどで指摘されたりします。また、今後はコメントツール(例:Librarian)などを標準が使うことが普及すればさらに論文の信頼性を担保できるようになるかもしれません。

また、大量の論文が投稿され全部追うことは難しくなり、論文キュレーションツールとして、話題になっている論文をまとめるarxiv sanity preserverdeeplearn.orgなども登場しています。

私も読んだ論文の中から面白そうなものはをツイートしていますが、それでも重要な論文を見逃すことがよくあるほど、研究成果が爆発的に出てきています。

 

5. 生成モデル

Deep Learningは、生成モデルでも大きなブレークスルーを起こしました。

例えば、VAE(変分自己符号化器)は連続変数を潜在変数とした場合でも誤差逆伝搬法だけで効率的に学習できるものであり衝撃的でした。

そして二つのニューラルネットワークを競合させて学習するGAN(敵対的生成モデル)がこれまでの生成モデルではできなかった高精細な画像を生成できることは非常に大きなインパクトを与えました。

GANは学習が難しいため、登場から1年間は殆ど後続の研究がなかった中、DCGANが自然な画像生成モデルの学習に成功し、実写と変わらないレベルの画像を生成できることを示しました[最近のGANの生成例,イラストの生成例]   。一方で、GANはその学習の難しさからダイエット本や英語本と同じように多くの研究を生み出しています(GAN Zoo)。

その後、通常の確率モデルの最尤推定による学習では,現実世界のデータにみられるサポート(確率密度値が0ではない)が低次元であるような分布を学習することができず[link]、GAN(の変種)が実現するOptimal Transport (最適輸送)やIntegral Probability Metricsを使わなければいけないということがわかり、Implicit Probabilistic Modelという名とともにGANが注目されました。

 

6. 理論解明

Deep Learningがなぜ学習できるのか、なぜモデルが大きいのに汎化性能が高いのか、何を学習できて何はできないのかといった問題に多くの研究者が取り組んできました。

もともとDeep Learningは非線形のモデルであり,パラメータ数が非常に大きく、従来の統計モデルや機械学習理論からは、謎に包まれていました。

完全な解明には至ってはいないものの分かってきたのは、Deep Learningの確率的勾配降下法(SGD)は極小解にはまりにくいだけでなく[link1 link2]、汎化性能が高いような幅が広い解を見つけられるということ[link]、またミニバッチ正規化[link]、スキップ接続[link]といったテクニックが学習を容易にし、適切なノイズを与えることで汎化性能をあげていることがわかってきています。

また、従来の機械学習の考え方ではパラメータ数が少ない方がモデルの複雑さは下がり、過学習しにくくなりますがDNNの場合、汎化性能はモデルが大きければ大きいほど高いことも予想されています[link]。

 

7. Software 2.0

またDeep Learningが工学的にも、「推論時と計算量と使用メモリ量が固定で済む」「モデルサイズを変えることで計算量と精度のトレードオフをスムーズにできる」「GPUのような並列処理向けプロセッサの開発が非常に容易になる」という利点があることも注目されてきました。

これをAndrej KarpathySoftware2.0と名付け、Deep Learningが単なる機械学習のツールではなく、ソフトウェアの作り方を変える大きなパラダイム・シフトを起こすと述べています。

 

今後について

それでは今後はどのようになっていくのでしょうか。未来の予測は難しく、5年前に予想した時は、Deep Learningがここまで広く適用されるということは予想できていませんでした。それでもしてみましょう。

 

1. 多数の教師なし学習の登場

現在、ディープラーニングが大きく成功しているのは正解ラベルがついたデータを使った教師あり学習です。一方、本当に難しい問題を解くには教師なし学習が重要になると考えられます。

Yann LeCunは講演の中で「知能をケーキに例えるなら、教師なし学習は本体であり、教師あり学習はケーキの飾り、強化学習はケーキ上のサクランボぐらいである。私達はケーキの飾りやサクランボの作り方はわかってきたがケーキ本体の作り方はわかっていない」

と述べています。

また、Geoffrey Hinton教授も[link]「脳のシナプスは10^14個あるが,人は10^9秒しか生きられない。サンプル数よりパラメータ数の方がずっと多いことになる。(これらのシナプスの重みを決定するためには)1秒あたり10^5個の制約が必要となり,多くの教師無し学習をしているとの考えに行き着く」と述べています。

世の中の膨大なデータの大部分は教師データがついていません。これらのデータを活かせる学習手法が望まれています。教師なし学習の中でも”pretext task”は、関係のなさそうなタスクを学習することで、その副作用として本当に学習したいことを学習することが増えています。現時点でも、様々なpretext taskが提案されています。おそらくpretext taskは一つだけではなく無数あり、それらを組み合わせて強力な学習を実現していると思われます[例, 表1に例多数]。しかし、これまで多くの教師なし学習手法が提案されているものの、それを使って教師あり学習、強化学習の性能を大きく向上する決定的な手法はまだ見つけられていません。

また、大きく成功するには学習データ数やモデルの大きさのスケールが数桁足りないという可能性があります。

人は1年間に10時間/日*3600秒/時*365日*10Hz=1.3億回の画像をみてそれらで予測学習や、補間学習、ノイズ除去学習をすることができます。

ただでさえ教師あり学習は人よりもサンプルを必要としているので教師なし学習でも大きな成果を生み出すには莫大な量のサンプルが必要になるかもしれません。

 

2.  微分不可能な要素を含んだNN

現在のディープラーニングは微分可能な構成要素を組み合わせて作られています。これにより誤差逆伝播法が可能となり、どれだけネットワークが複雑になっても、出力を修正するには各モジュールをどれだけ修正すればよいかが正確にかつスケーラブルに求めることができます。

一方で、微分不可能な構成要素も困難な問題を解くためには不可欠です。例えば、汎化するロジックやルールを獲得するためには、過学習につながる情報の中で不要な情報を捨てることが必要になります。これには複数の値を一つの値に縮約(contraction)する、または離散化するということが必要になります。

あの猫もこの猫もそのまま扱わずに「猫」という離散値を割り振ってその上でルールを学習すれば、誤った入力との相関を見つけることはありません。

一方、離散化は微分不可能な計算ですので、誤差逆伝播が使えません。しかし、この場合でも勾配の不偏推定量を求められる手法がいくつか登場しています[例 Relax]。

また、強化学習においても”環境”は微分不可能でそもそもどのような計算がされるのかはわかりませんが、これも同様に環境のダイナミクスをシミュレーションするNNを作り、伝播することができるでしょう。これは環境を想像する能力やデータから獲得した上でのモデルベース学習とも関係します。

離散変数によるゲートはconditional computationやmixture of expertシステムのように使うモジュールをダイナミックに選択し、そのモジュールだけ計算させることで計算量を劇的にさげることができます。

今後は、誤差逆伝播法だけではなく、離散変数での最適化も可能な離散/組み合わせ最適化法[link]、遺伝的アルゴリズムや、進化戦略[link], を使った手法も必要になるでしょう。

 

3.  メタ学習、継続学習

より複雑な問題を解くために、ある学習問題に他の学習結果を利用することが必要となります。今のようにある問題に対して特定の学習器で学習させるのではなく複数の問題、タスクを同時にまたは順番に一つの学習器を学習させることが重要となってきます。

一つの人工知能システムが非常に多くの問題を解けるようになる汎用人工知能システムに到達するにはまだ多くの問題を解く必要があり難しいですが、それでも関連するタスクを一緒に、または次々と学習していくことで一つの学習に必要なサンプル数を大幅に削減できたり、性能を大きくあげるといったことは可能になると考えられます。

カリキュラム学習、ブートストラップ学習といった、複数の学習を計画をたてて学んでいくことも今後大きく伸びていくことと考えられます。

 

4.  シミュレーションとの融合、説明可能性

現実世界の問題を解く上で、現実世界の様々な制約を克服するためにシミュレーション上で学習、検証することがより一層必要になります。その上、どのように計画を立てているのかを説明する上でもブラックボックスであるニューラルネットワークモデルの中の計算処理を説明するのではなく、実際に実現例を示し、シミュレーション上でこうなっているからと説明することが増えていくと考えられます。

今の生成モデルは、様々な条件付けをして生成をすることで滅多にとれないデータを生成し、その上で学習、検証することを可能にします。これは、システムに想像力を備えさせた上で、まだ経験していない環境で学習できることを可能とさせるでしょう。

 

5. 人や既存システムとの協調

これらAIシステムが実問題に適用されていく中で、いかに人と協調するか、既存システムと協調するかが重要となってきます。全ての問題を完璧に解くことが理想ですが、そうならなかった場合でも、解けている問題だけを担当させ、残りを人や既存システムが担当することが多くなるでしょう。

その場合、認識結果や理由をわかりやすくするだけでなく、制御できるようにチューナーのようなツマミが必要になるかもしれません。また、人が自分の感覚を拡張したと感じられるように、操作可能性や応答性が重要になります。人馬一体という言葉がありますが、そのように人がAIシステムを自由自在に扱うことができるようになることが必要となるでしょう。


実センサを搭載したロボットカーの深層強化学習による自律制御

$
0
0

はじめに

はじめまして。PFNで夏季インターンに続き、アルバイトをしている宮下恵です。普段は東京農工大学大学院で強化学習に関する研究をしており、ものづくりやロボットに興味があります。

「実センサを搭載したロボットカーの深層強化学習による自律制御」について報告させていただきます。

 

背景

パーソナルモビリティ・移動ロボットは様々な領域で注目されています。具体的には家庭内でのヘルパーロボット、工場内での無人搬送車などが挙げられます。これらのロボットは臨機応変に対応することが重要です。このような、知能を持つ実用的な移動ロボットシステムを作ることが今回のシステムの目的です。

PFNでも過去に移動ロボットのデモ(分散深層強化学習によるロボットカー制御CES2016のロボットカー)を発表しています。こちらは先ほどご紹介したデモで開発したシステムを発展させたものです。これらのデモは深層強化学習をベースとして良い運転を学習させていました。

インターンの期間では過去のデモをより実用に近づけるテーマに取り組みました。

本テーマの概要とこれまでのデモとの違い

これまで開発されたロボットカーをより実用的にする上で、主に以下の3点が考えられます。

  1. ロボットカーに実センサを搭載すること
    これまでのロボットカーは実センサを載せることができなかったため、天井カメラで車の位置を認識し、その結果から外部PCによるシミュレーションで仮想的なセンサ情報を生成していました。今回は実センサを搭載することで想定外の障害物が現れても回避できるように改良します。その一方で、検知した物体を区別できない難しさがあります。これまでは障害物と壁を区別して検知できる設定でしたが、今回はそのような区別ができません。
  2. ロボットカーの中で処理を完結させること
    これまでは外部のサーバ上で推論を行い、得られた結果をロボットカーに送っていました。今回は推論もロボットカー上で行います。
  3. ロボットカー内部での自己位置推定
    地図上で指定されたルートとの距離を測るためには自車位置の認識が必要となります。本テーマでは自己位置推定を実現し、様々な応用ができることを目標にします。

問題設定

ロボットカーの目標(報酬)は以下の2つです。

  1. 決められたルートに沿ってなるべく速く走ること
  2. 障害物や壁にぶつからずに走ること

この問題を強化学習を使って解いています。行動は前、右前、右、右後ろ、後ろ、左後ろ、左、左前、ブレーキの9種類です.LIDARで検知した物体までの距離、過去の行動、モータ制御命令の3種類の状態を入力して、いずれかの行動を選択します。

学習はシミュレータ上だけで行い、実機では学習済みのニューラルネットを用いて行動を選択します。強化学習の実装にはChainerRLを利用しています。

全体の構成

シミュレータ上で学習させたニューラルネットをあらかじめ用意しておきます。ロボットカーでは以下を繰り返し行います。

  1. センサ情報の取得
    ロボットカーの前方に搭載されたLIDARから物体までの距離を検知します。
  2. 行動の選択
    Raspberry Pi上で、3種類の状態を学習済みのニューラルネットに入力して行動を選択します。
  3. モータ制御命令の送信
    選択した行動を元に、Raspberry PiからEV3にモータ制御命令を送ります。

まとめ

実センサを搭載し、かつ、ロボットカーの内部で処理が完結したシステムを構築することができました。このようなシンプルな構成で動作することが実証できたため、今後無人搬送車やパーソナルモビリティなどへの応用も考えられます。また、ロボットカーが自律であるため、簡単に動作させられるという利点があります。

さらに、冒頭の動画のように動く障害物を回避しながらルートに沿って走ることができました。しかし、まだ学習は完全ではなく衝突することもあるため、改善の余地は残っています。また、自己位置推定も様々な環境に対応できるようにはなっておらず、今後も改良の必要があります。

このテーマはメンターの皆様をはじめ、社員の方々に教えていただきつつ、進めておりました。この場をお借りしてお礼申し上げます。実機としての安定性や学習の改善など、まだまだ改良できる点があるので、応用を見据えながら今後も開発を進めていきたいと考えています。

化学、生物学分野のための深層学習ライブラリChainer Chemistry公開

$
0
0

* English blog is also written here.

Chainer [1]を使った、化学、生物学分野のための深層学習ライブラリ Chainer Chemistry を公開しました。

 

本ライブラリにより、分子構造に対して簡単に深層学習(Deep learning)を適用することができるようになります。

例えば、化合物の分子構造を入力とした毒性の予測や、HOMO(最高被占軌道)レベルの回帰予測など、様々な化学的性質の予測に深層学習を適用することができます。

なお本ライブラリの開発にあたっては、PFN2017夏インターンシップに参加した京都大学の秋田大空さんにも実装に携わっていただきました。

 

特長

様々なGraph Convolutional Neural Network のサポート

Graph Convolutional Network (詳しくは下記参照)の登場により、”グラフ構造”を入力として深層学習が適用できるようになりました。Graph Convolutional Networkは現在盛んに研究がおこなわれていますが、本ライブラリでは今年発表されたばかりの論文も含めいくつかのネットワークを追実装しています。

現時点では以下のモデルが実装されています。

  • NFP: Neural Fingerprint [2, 3]
  • GGNN: Gated-Graph Neural Network [4, 3]
  • WeaveNet: Molecular Graph Convolutions [5, 3]
  • SchNet: A continuous-filter convolutional Neural Network [6]

 

データの前処理部分をライブラリ化・研究用データセットのサポート

様々なデータセットを共通のインターフェースで使えるように、ソフトウェアを設計しています。また、研究用によく使用されるデータセットに関してはライブラリ内でダウンロード・前処理を行うことができます。

現時点では以下のデータセットをサポートしています。

  • QM9 [7, 8]: 9個までのC、O、N、F原子とH原子から構成された有機分子に対して、B3LYP/6-31GレベルのDFT(密度汎関数法)で算出されたHOMO/LUMOレベル、内部エネルギーなどの物性値をまとめたデータセット
  • Tox21 [9]: 12種類のアッセイに対する毒性をまとめたデータセット

 

学習・推論コードのExample code を提供

ライブラリの使い方がわかるよう、モデルの学習コード・推論コードのExampleも公開しています。すでに実装済みのモデル・データセットに対して手軽に訓練・推論を試してみることができます。

 

背景

材料探索・創薬などの応用分野では、分子構造を入力とするシミュレーションが重要な位置を占めます。中でも量子力学的効果を高い精度で取り込みたい場合に用いられるDFT(密度汎関数法)のようなシミュレーション手法は、特に大きな分子に対して、膨大な計算量を要求することが知られています。このため、有用な新物質の候補となる多数の分子構造に対してシミュレーションを行うのが困難です。

そこで機械学習分野では、これまでに実測・計算されたデータを学習することにより、未知の分子の物性値を予測するというアプローチでの研究がおこなわれています。ニューラルネットワークを用いることにより、量子シミュレーションよりも高速に物性値の予測ができることが期待されています。

 

 

Cite from “Neural Message Passing for Quantum Chemistry”, Justin et al. https://arxiv.org/pdf/1704.01212.pdf

 

化合物に対して深層学習を適用することを考えた場合、その入出力をどのように扱うかということが問題となります。これは、通常の深層学習手法が固定長のベクトル値データを入力とするのに対し、分子構造は可変長で分岐やループを持ちうるデータ形式、つまりグラフであるためです。しかし、近年グラフ構造を扱うことのできるGraph Convolutional Neural Network が提案され、注目を集めています。

 

Graph Convolutional Neural Network とは

Convolutional Neural Network (畳み込みニューラルネットワーク)は、局所的な情報のみで計算を進める畳み込み層の導入によって、画像分類、セグメンテーションや画像生成などの分野で成功をおさめました。

Graph Convolutional Neural Network では、同様にグラフ上で近いノードに対する畳み込み演算を導入することにより、グラフ構造の取り扱いを可能にしています。

How graph convolutions work

CNNが画像を入力とするのに対し、Graph CNNではグラフ構造(分子構造など)を入力として深層学習を行います。

 

グラフ構造を入力とするGraph Convolutional Neural Network は、分子構造にかぎらず、ソーシャルネットワークや交通網などに広く適用でき、ここ最近研究が進んできています。例えば、文献[10] では画像、[11]ではナレッジベース、[12]では交通量予測にGraph Convolutionを適用しています。

Graph Convolutional Networkに関しては、以下のブログでもわかりやすく説明されています。

 

対象ユーザー

  1. Deep learningの研究者
    本ライブラリでは、最新のGraph Convolutional Neural Network の追実装を行っています。
    今後、Graph Convolutionは計算科学に限らず、様々な分野への適用が考えられる技術なので、ぜひ様々な方に使っていただきたいです。
  2. 物質探索・創薬などの研究者
    本ライブラリを用いることにより、様々な化合物に対する物性値予測のモデルを構築することができます。

 

今後の予定

本ライブラリはまだベータ版で、開発を行っているところです。今後は以下のような機能をサポートしていきたいと検討しています。

  • Pre-trained modelを提供し、推論だけでの使用をサポート。
  • データセットの拡充
  • モデルの追加

Tutorial も用意しているので、ぜひ試してみてフィードバックをいただけるとありがたいです。

 

参考文献

[1] Tokui, S., Oono, K., Hido, S., & Clayton, J. (2015). Chainer: a next-generation open source framework for deep learning. In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS) (Vol. 5).

[2] Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems (pp. 2224-2232).

[3] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212.

[4] Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493.

[5] Kearnes, S., McCloskey, K., Berndl, M., Pande, V., & Riley, P. (2016). Molecular graph convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8), 595-608.

[6] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller (2017). SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. arXiv preprint arXiv:1706.08566

[7] L. Ruddigkeit, R. van Deursen, L. C. Blum, J.-L. Reymond, Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, J. Chem. Inf. Model. 52, 2864–2875, 2012.

[8] R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules, Scientific Data 1, 140022, 2014.

[9] Huang R, Xia M, Nguyen D-T, Zhao T, Sakamuru S, Zhao J, Shahane SA, Rossoshek A and Simeonov A (2016) Tox21 Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs. Front. Environ. Sci. 3:85. doi: 10.3389/fenvs.2015.00085

[10] Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst (2016), Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS 2016.

[11] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling (2017) Modeling Relational Data with Graph Convolutional Networks. arXiv preprint arXiv: 1703.06103

[12] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu (2017) Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv preprint arXiv: 1707.01926

 

Chainerの可視化・実験管理を支援するChainerUIを公開

$
0
0

Chainer上の実験中の学習ログの可視化や実験管理機能を追加するパッケージ、ChainerUIを公開しました。

ChainerUIは、多くのChainerユーザが持つ「学習中の実験ジョブの進捗を手軽に知りたい」、「複数の実験ジョブの手軽に管理したい」ニーズに応えるために開発しました。
具体的には、下記の機能を備えています。

  • 学習ログの可視化
  • 実験履歴閲覧
  • 実行中の実験に対する操作 (スナップショット・学習ハイパーパラメーター修正)

本パッケージは、Chainerの学習用Trainerを監視するChainer extensionとして機能するものです。このChainer extensionを有効化した実験を、Webブラウザからリアルタイムで監視、制御することができます。複雑な依存関係がないため、Trainerを用いる既存の実験スクリプトに簡単に導入できます。

学習ログの可視化


Chainerで実験中のLossやAccuracy等の学習ログを、Webブラウザで可視化することができます。表示する項目は、ユーザが任意に指定できます。

実験管理機能


Chainerを使った複数の実験を1つの画面に一覧表示することができます。各実験には、実験条件を表示することができます。また、ブラウザ上から実行中の実験に対して、スナップショット保存の実行や、ハイパーパラメータの修正が可能です。

セットアップおよび実行

ChainerUIのインストール後、セットアップを行います。

pip install chainerui
chainerui db create
chainerui db upgrade

プロジェクトを登録しサーバーを実行後、Webブラウザでhttp://localhost:5000/にアクセスします。プロジェクトの登録はサーバー起動後にも行うことができます。

chainerui project create -d PROJECT_DIR [-n PROJECT_NAME]
chainerui server

学習ログの可視化

Chainer標準のLogReportが出力するlogファイルを監視し、実験中の学習ログを表示します。下記はtrain_mnist.pyを使用した場合の実行例です。

chainerui project create -d path/to/result -n mnist
python train_mnist.py -o path/to/result/1

“mnist” プロジェクトに “…/result/1” という名前の実験が加えられ、”path/to/result/1”に出力されるlogファイルのデータをグラフに表示します。

実験管理機能

上記logファイルと同じディレクトリにあるargsファイルを一覧に表示します。このargsファイルはkey-value形式のJSONファイルです。下記はtrain_mnist.pyに対して、起動引数をargsファイルに保存するサンプルコード(抜粋)です。

# [ChainerUI] import chainerui util function
from chainerui.utils import save_args

def main():
    parser.add_argument('--out', '-o', default='result',
                        help='Directory to output the result')
    args = parser.parse_args()

    # [ChainerUI] save 'args' to show experimental conditions
    save_args(args, args.out)

実験中のジョブを操作するには、ChainerUIのCommandsExtensionを使用します。同じくtrain_mnist.pyに対するサンプルコード(抜粋)です。任意のタイミングでスナップショットを取ったり、学習率などのハイパーパラメータを修正することができます。

# [ChainerUI] import CommandsExtension
from chainerui.extensions import CommandsExtension

def main():
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    # [ChainerUI] enable to send commands from ChainerUI
    trainer.extend(CommandsExtension())

コード全体は、examples/train_mnist.pyを参照してください。

公開の背景

ディープラーニングの応用によって、様々な課題に対するState-of-the-artが日夜目まぐるしく塗り替えられる現在、実験の可視化や管理の効率化は大きな課題となっています。そのため、効率化支援のアプリケーションが乱立する状況も生んでいます。

PFNは、Chainerユーザが上記の課題に悩まされることなく、心地よく実験をこなせることを望んでいます。このような背景から、本パッケージをChainerユーザの効率をよりいっそう高めるための公式ツールとして位置づけて公開します。

PFN2017夏インターンシップの成果

本パッケージは、PFN2017年夏インターンシップに参加した稲垣さんと小林さんの開発成果です。

多くのリサーチャーやエンジニアを抱えるPFN社内では、以前から効率的な機械学習の実験の実施が課題となっていました。しかしながら、各々個人の工夫に頼っていたのが実情でした。そこで、「実験の効率化を支援するためのフロントエンド・アプリケーション」をインターンシップの課題として位置づけて開発を開始しました。

フロントエンド・エンジニアとしてタッグを組んだおふたりは、2か月という短い期間ながらも社内に溶け込み、要件調整から設計・実装まで自発的にプロジェクトを進めました。そしてインターンシップ終了後もPEとして継続的にコミットを続けた上、社内での4ヶ月間のドッグフーディングを経ることで、本日の公開を迎えています。

今後の展望

PFNはChainerUIをChainer製品群の1つとして位置づけ、今後も積極的に開発を進めていく予定です。以下の機能の実装が予定されています。

  • グラフの出力機能
  • 操作コマンドExtensionの拡充 etc

また、PFNでは最先端の研究開発成果物を、エンドユーザに届けるスキルを持ったフロントエンド・エンジニアを募集しています。

CHI 2018とPacificVis 2018

$
0
0

PFNでヒューマン・コンピュータ・インタラクション(HCI)を研究するリサーチャーのファブリスです。

現在ディープ・ニューラル・ネットワーク(DNN)を基にした自動化システムは急速に進化していますが、その過程に伴う人的要因を軽視しない「Human in the loop(人間参加型)」と呼ばれる考え方が重要です。この点において、HCI研究のコミュニティは、今までにないユーザー中心のアプリケーションを作るツールとして機械学習の応用技術を活用するだけでなく、この複雑なツールの導入・使用・管理を促進する手法を提供するという点で貢献できる良い状況にあります。また、情報可視化(InfoVis)コミュニティが、DNNの内部構造を理解する上で役立つユーザー・インターフェースや可視化手法を提案し、DNNのブラックボックス解明に光明が見え始めています。PFNでは、最新のHCIならびにInfoVis/Visual Analytics(視覚分析)分野の研究を常に追い求めるだけでなく、これらの分野において実際に貢献する事を目指しています。

PacificVis

アジア太平洋地域の第11回IEEE可視化シンポジウム (PacificVis 2018)が4月に神戸で開催され、PFNはスポンサーとして参加しました。初日には清華大学のShixia Liu教授が「Explainable Machine Learning(説明可能な機械学習)」と題した基調講演を行った他、IEEE VIS’17での最優秀論文がTensorFlow向け視覚解析システムに関する論文であったのに続き、今回も「GANViz: A Visual Analytics Approach to Understand the Adversarial Game」が最優秀論文賞に選ばれるなど、特に機械学習分野の成果が際立つシンポジウムとなりましたが、いずれも説明可能なモデルやインターフェースに基づく機械学習技術を作り出すという試み「Explainable Artificial Intelligence (XAI: 説明可能な人工知能)」と密接に関連しています。これは、自動化されたシステムが、ある特定の判断や結論に至った経緯や根拠を理解・解釈しようとする取り組みですが、これらのアルゴリズムやツールが果たしてEUの新たな一般データ保護規則(GDPR)における「説明を求める権利」に対応するに十分であるかは今後の課題です。

CHI

CHI2018

ACM Conference on Human Factors in Computing Systems (CHI) はヒューマン・コンピュータ・インタラクション分野における世界最高峰の国際会議です。今年はカナダのモントリオールで開催され、参加者は3300名を超えました。同国のジャスティン・トルドー首相も書簡で歓迎の意を表しています

HCI研究における機械学習の代表的な適用法として、複雑なセンサーデータからパターンを検出あるいは認識する事が挙げられます。これにより、未処理のタッチデータから手の平の接触を検知し、ペン先動作と書く音を利用して手書き文字を認識するなどの斬新なインタラクション技術を実現しています。深層学習のフレームワークが 広く利用可能になり、HCIのリサーチャーはこの様な新たなツールを組み合わせる事で、既存技術の認識性能を向上させたり、全く新たな技術を生み出したりしています。これらは既存の手法では非効率であったり、実現すること自体が困難でした。後者の良い例として、生成ネットが可能にしたシステムがあります。DeepWritingはタイプセットされたテキストから筆跡を作成する深層生成モデルで、書体を真似たり美化したりできます。IllumiRoom, から発想を得たExtVisionは、実際のコンテンツを使わずに、conditional adversarial nets (条件付き敵対的ネット)で周辺画像を自動生成します。

Aksan, E., Pece, F. and Hilliges, O. DeepWriting: Making Digital Ink Editable via Deep Generative Modeling. Code made available on Github.

HCI研究における機械学習の上記以外の応用分野としては、インタラクション予測と感情推測への応用が増えています。前者のインタラクション予測においては、DNNがどのようにして 垂直メニューの選択を使うインタラクション作業のヒューマン・パフォーマンスを予測できるのかについて、Li氏、Bengio (Samy)氏、Bailly氏が行った研究があります。感情と状態の認識については、MITの Lex Fridman 氏による入門講座 Deep learning for understanding the human(人間への理解を深める深層学習)に加えて、 動画の中の瞳孔の動き と EEG(脳波信号)  から認知負荷を推定する研究論文がそれぞれ発表されました。センサー付きのモバイル機器やウェアラブル機器が普及し続ける中で、人間をよりよく理解し、人間の動きを予測する「スマートな」システムが、良くも悪くも、今後次々に登場するでしょう。

CHIで は可視化関連の発表も多く、今年も例外ではありませんでした。特に、ビッグデータとDNNの理解に向けた視覚解析に関連が深かったのは、Cavallo氏 とDemiralp氏の研究でした。彼らは、高次元データの探査分析を向上させるヴィジュアル・インタラクション・フレームワークを作り出していますが、減次元グラフを探索し縮小データを修正する事が初期データセットにどのような影響を及ぼすかを観測できるツールを利用しています。MNIST および QuickDraw上で自動符号化器を利用する事例が特に興味深く、ユーザーが入力サンプルを利用して結果がどのように変わることを確認できます。

Cavallo M, Demiralp Ç. A Visual Interaction Framework for Dimensionality Reduction Based Data Exploration.

また、DuetDrawについても忘れずに触れておきたいと思います。これは、ユーザーとAIの共同作業を可能にするプロトタイプで、PFNのPaintsChainerを使って絵を描きます!

Multiray: Multi-Finger Raycasting for Large Displays

今年のCHIで発表した私自身の研究は機会学習関連ではなく、指から発射する複数の光線を利用して、離れた画面表示とインタラクションするというものでした。これはウォータールー大学在籍時に行ったDan Vogel氏との共同研究ですが、この度Honourable Mentionとして褒状をいただきました。この研究では、指一本のレイキャスティングを複数の指を使った多重光線へと高度化するという発想に基づき、スクリーン上に投影された点を指で操り様々な幾何学形状を形成する事で、インタラクションのボキャブラリを増やしています。


Matulic F, Vogel D. Multiray: Multi-Finger Raycasting for Large Displays

考察

今のところ、DNNのブラックボックスを開けて解明しようという取り組みは、可視化コミュニティにおいて最も盛んに行われていますが、これまで提案された多くのツールは可視化にフォーカスし、インタラクティブ性が限定的となっています。とりわけ入出力データを微調整して、これが中間層のニューロンにどのような作用を及ぼすかを理解するという点において乏しいです。そこでDNNの動的解析を支援するツールを作成し、モデルに対してインタラクティブな調整を施すことができるHCIリサーチャーの出番になります。さらに、機会学習の一連の処理において、データのラベル付け、モデル選択・統合、データの拡大・生成といった人間が関与するプロセスの改善にはHCIからのアプローチも必要です。このような側面を考慮した研究成果が今後CHIやHCIの関連学会でより多く公開される事が期待されます。

Emergence of Locomotion Behaviors in Rich Environment の追試

$
0
0

1.内容紹介

はじめまして。PFNでSummer Internship 2017に続き、アルバイトをしている東京大学の西浦です。現在は駒場2キャンパスの先端研で神経科学・循環器系の数理モデルの研究をしています。

さて、2017年の春頃、DeepMindから”Emergence of Locomotion Behaviours in Rich Environments”[1]という論文が公開され、その動画が話題になりました。しかし、この論文では公開されている情報が限られており(深層学習分野でよくあることなのですが)、実験環境の設定、ネットワークの構成や学習に必要なパラメータで不明なものが多く、論文の結果を再現するためには不明な部分を推定するために多くの組み合わせを試す必要がありました。そのため、このような実験の再現は深層学習の実践的な知識と学習のための大規模なリソースが必要とされ、個人で行うのはなかなか難しいと思います。今回はその論文をChainer FamilyのひとつであるChainerRLを利用して再実装し追試を行い、その結果として様々な知見が得られましたのでご報告させていただきます。

Emergence of Locomotion Behaviors in Rich Environmentsの元動画

2.元論文の概要

強化学習のパラダイムは、原理的には単純な報酬のみから複雑な振る舞いを学習することができるようになっています。しかし実際は、意図した振る舞いを学習させるためには、報酬関数を慎重にチューニングすることが一般的です。この論文では、報酬はなるべく直感的な構成で固定してしまい、学習に使う環境(タスク)を様々な種類用意して、エピソードごとにランダムにその環境を変更するというアプローチが採用されています。これにより、様々な環境に対してロバストで、複雑な行動を獲得させようということをモチベーションに実験が行われています。

アルゴリズムとしては、方策勾配法(Policy Gradient)をベースにして、現在の方策に近い方策へと徐々に更新していくProximal Policy Optimization(PPO)[3]を用いています。PPOは論文公開当時では一番性能の良い強化学習のアルゴリズムだったのでそれが採用されていて、論文には同じく性能のよいTrust Reigion Policy Optimization(TRPO)[4]との比較もされています。

3.アルゴリズム、実験手法の解説

前提知識

まず強化学習のフレームワークについて説明します。強化学習では環境とエージェントというのがあり、エージェントが環境に対して行動をし、環境はそれを受けてエージェントに対して観測と報酬を返すという枠組みになっています。エージェントは、報酬に基づいて行動を決定するためのルール「方策(Policy)」を学習していきます。この論文では、ロボットなど連続値の行動を扱いやすい方策勾配法を採用しています。方策勾配法ではActor-Criticモデルという、エージェントをActor(行動器)とCritic(評価器)でモデル化し、例えばそれぞれをニューラルネットワークで表現します。また、エージェントがActor-Criticモデルだと、例えば、Actorのネットワークを決定しているパラメータが方策に該当します。Criticは、現在の方策の元である状態がどれだけの価値を持つかを表す価値関数(ある状態以降の報酬の期待値に割引率をかけたものが一般的)でモデル化されます。

 

実験環境としては、物理エンジンのMuJoCo [2]と強化学習のフレームワークであるOpenAI Gym [5]を用いています。代表的なものとしては、Planar walker(またはWalker2d)と呼ばれる二次元平面内でエージェントに二足歩行を行わせるモデルが挙げられます。Planar walkerの場合、それぞれのエージェントは各関節を曲げるトルクにより行動を表現することになります。また、エージェントが環境から受けとる観測は、大きく内部状態と外部状態に分けられ、各関節の角度、角速度、位置、接触、トルクセンサ情報などを内部情報、地形の高さ情報を外部情報として受け取っています。報酬はPlanar walkerの場合だと以下のように設計されており、基本的には前に進むと報酬がもらえ、それに加えて姿勢のペナルティー(負の報酬)などが含まれています[1]。

Planar walker [4]

今回追試したアプローチでは、方策を決定するネットワークは内部状態と外部状態を別々に処理して最後に合わせて処理して、行動の次元個分、平均と分散の組を指定した正規分布を確率的方策としてを出力する構成になっています。

アルゴリズム

ここで、追試で使ったTRPOとPPOの二つのアルゴリズムについて解説します。まず、ベースになっている方策勾配法は、目的関数(原則としては現在の方策による期待値を用いる)を方策のパラメータに関して微分し、得られた勾配方向にパラメータを更新する方法です。目的関数を計算するために、現在の方策で行動して、その系列データを貯めること(一般化方策反復)を行います。しかし、方策の更新には慎重になる必要があり、一度方策が劣化してしまうと、それから後に得られるサンプル系列も悪化してしまい、持ち直すのが難しくなるという問題があります。

そこでTRPOは、方策の更新に制限をかけながら更新していきます。具体的には、KLダイバージェンスを使って信頼領域(trust region)を定義して、その信頼領域を超えないように、制約条件つきの最適化問題を解くことにより方策のパラメータを更新します。これにより方策の分布として大きな変化を抑制することができて、方策の大きな劣化を防ぐことができます。TRPOが二回微分を計算するので、計算量が多いことを踏まえ、PPOはTRPOの制約条件を目的関数に含めて非厳密化することで、TRPOより単純で軽い計算量でそれなりの性能を発揮するアルゴリズムになっています。

具体的には、方策を \(T * N\) time steps走らせて(Nはスレッドの数)集めた \(s_t\) ,\(a_t\), \(r_t\) を用いて \(A_t\)(アドバンテージ)を計算し、\(L^{CLIP} \)を前の方策と新しい方策の比率を \(\pm \epsilon\) 内にクリップして勾配方向にパラメータを更新していきます。方策のネットワークと価値関数のネットワークでパラメータを共有する(最後の出力層のみそれぞれのパラメータを使う)なら、方策と価値関数のネットワークを独立に更新できないので、目的関数に価値関数の誤差項を加え、探索の幅を増やしたければ、エントロピーボーナスを加えることもあります。(最終的な目的関数は \(L^{CLIP+VF+S} \))ここで登場するアドバンテージとは、収益(報酬の期待値)からベースラインを引いたもので、勾配の推定値の分散を減らすためのテクニックです。それぞれの計算式を以下に示します[3]。

元論文ではPPOをさらに分散版にしたものを使っています。追試としては、PPOで方策ネットワークと状態価値関数にLSTMを含んだものと、TRPOを用いましたが、1スレッドの場合では、TRPOの方がかなり性能がよかったです。したがって、以下の結果は全てChainerRLのTRPOで学習させた結果となります。

実験手法

追試としては2通りの環境で訓練しました。一つ目は元論文の動画に近い3種類のタスクがある環境で、もう一つは地形の凸凹の状態がランダムに変わるものです。

元論文に近い環境では、Planar Walkerを①箱を飛び越えるタスク、②穴を飛び越えるタスク、③浮いている板を避けるタスクの3種類の環境で順番に訓練した後、3種類の環境(タスク)がランダムにエピソードごとに切り替わる環境で訓練します。

地形の凸凹の状態がランダムに変わる環境では、エピソードごとにすべての地形が変わる中で訓練します。

4.結果

学習し始めのエピソードごとにランダムに地形が変わる中で試行錯誤している様子

学習後歩いている動画

こちらでは、学習初期段階からランダムに地形を変更していたためか、とにかく脚を高く上げて、どんな障害物でも越えられるような動きになってしまったようです。

動画に示した歩行行動を獲得するまでの学習曲線を上に示します。10,000ステップごとに10エピソード走らせて評価を行なっており、青のrewardは10エピソードの平均累積報酬で、上下の灰色の線は10エピソード内での最小値最大値になっています。200万ステップほどで収束していることが分かります。

 

元論文に近い環境で学習後歩いている様子

障害物によって頭を下げたり、ジャンプする高さが変わったり、動きが変わっていることが見て取れます。一つ目と二つ目の動画ではPlanar walkerの関節の減速比のパラメータが違っていて、このような微妙な差でも獲得される動きに違いが出てしまいます。

 動画に示した歩行行動を獲得するまでの学習曲線を上に示します。歩く動作は120万ステップほど、穴を飛び越える動作は800万ステップほど、浮いている板を避ける動作は400万ステップほどで学習が収束していることが分かります。

タスクによって報酬の平均がそこまで変動していないものもあり、歩く動作を獲得した状態から箱を飛び越える動作の獲得にはそれほど学習が必要ではないが、箱を飛び越える動作を獲得した状態から穴を飛び越える動作を獲得するのと、箱を飛び越える動作を獲得した状態から浮いている板を避ける動作を獲得するためにはかなり学習が必要であることが分かります。

元論文では適切に実験設定が考えられていて、カリキュラムラーニングになっていたために、タスクに応じて行動をうまく切り替えられるようになっていましたが、ただ単に地形やタスクをランダムに変えるだけでは、どんな環境にも対応するような方策を獲得してしまうようです。

5.考察

問題点の一つに、初期条件を注意深く設定しないと意図した学習結果になりづらいという問題があります。今回の場合も初期の状態変数の分散や、地面とMuJoCoのモデル(Planar walkerなど)との高さ方向の相対的な位置は学習の様子をみながら調整することが必要でした。具体的に注意した点としては以下のような点が挙げられます。

  • ある程度初期状態に分散がないと、分散の範囲で実現できる行動になってしまう。(逆に分散が大きすぎても学習がうまく進まないことがある)
  • 環境をリセットした時に何ステップ分フレームをスキップしてから指令を出し始めるか、によって獲得されるモーションが変わってくる。(例えばMuJoCo環境内で、完全に地に足が着いてから指令値を出すようにした、など)
  • 歩行を獲得させる場合、学習の過程で最初に獲得されるのはその場に立っているという方策なので、初期位置の周辺はなるべく平らな方がよさそう。

その他にも、下記の記事[6]に現状の深層強化学習の課題はよくまとまっているので、ぜひ読んでいただきたいです。(方策を更新していくために特定のアルゴリズムを採用しても、報酬関数、方策を表現するネットワークのパラメータなどは自分で任意に決定する必要があり、設定する報酬によって獲得される方策がかなり変わってしまうという問題など。)

 

失敗例の動画

けんけんを獲得している動画(初期化した時の相対的な高さの問題で、片足を前に出す方策を獲得できなかった例、初期状態の分散はうまくいった例と同じ)

6.PFNインターンの感想

ある仮説を検証するのに、「ある実験系でやってみて上手く行かなければもっと単純化した系でやってみる。」という、研究の基礎的なプロセスの体験ができたのはとてもよかったです。また、ロボティクス関係の様々な研究を知ることができ、そこで研究している人たちとの繋がりができたのは一番大きな収穫だったかもしれません。最後に、情報交換の重要性も強く意識することができました。有名なライブラリやパッケージの使い方(インストールで苦戦するものなど)や、こういう手法を試したけどいまいちだった、ハイパーパラメータの情報など、公開されていなけど実験をしていく中では欠かせない情報などを共有できる環境が、とてもありがたいなと感じました。

元論文の情報が結構少なく、なかなか学習が進まず進捗が出ずに精神的に辛い時期もありましたが、様々な方に積極的に相談するようになってからは比較的スムーズに乗り切ることができたように思います。最後になりましたが、ご指導いただいてるメンターの皆様をはじめ、社員の方々に感謝を表して報告を終わらせていただきたいと思います。

参考文献

[1] “Emergence of Locomotion Behaviours in Rich Environment” https://arxiv.org/abs/1707.02286v2

[2] MuJoCo advanced physics simulation http://mujoco.org/

[3] “Proximal Policy Optimization Algorithms” https://arxiv.org/abs/1707.06347

[4] “Trust Reigion Policy Optimization” https://arxiv.org/abs/1502.05477v5

[5] OpenAI Gym https://gym.openai.com/docs/

[6] “Deep Reinforcement Learning Doesn’t Work Yet” https://www.alexirpan.com/2018/02/14/rl-hard.html

 

ハイパーパラメータ自動最適化ツール「Optuna」公開

$
0
0

ハイパーパラメータ自動最適化フレームワーク「Optuna」のベータ版を OSS として公開しました。この記事では、Optuna の開発に至った動機や特徴を紹介します。

 

 

ハイパーパラメータとは?

ハイパーパラメータとは、機械学習アルゴリズムの挙動を制御するパラメータのことです。特に深層学習では勾配法によって最適化できない・しないパラメータに相当します。例えば、学習率やバッチサイズ、学習イテレーション数といったようなものがハイパーパラメータとなります。また、ニューラルネットワークの層数やチャンネル数といったようなものもハイパーパラメータです。更に、そのような数値だけでなく、学習に Momentum SGD を用いるかそれとも Adam を用いるか、といったような選択もハイパーパラメータと言えます。

ハイパーパラメータの調整は機械学習アルゴリズムが力を発揮するためにほぼ不可欠と言えます。特に、深層学習はハイパーパラメータの数が多い傾向がある上に、その調整が性能を大きく左右すると言われています。深層学習を用いる多くの研究者・エンジニアは、ハイパーパラメータの調整を手動で行っており、ハイパーパラメータの調整にかなりの時間が費やされてしまっています。

Optuna とは?

Optuna はハイパーパラメータの最適化を自動化するためのソフトウェアフレームワークです。ハイパーパラメータの値に関する試行錯誤を自動的に行いながら、優れた性能を発揮するハイパーパラメータの値を自動的に発見します。現在は Python で利用できます。

Optuna は次の試行で試すべきハイパーパラメータの値を決めるために、完了している試行の履歴を用いています。そこまでで完了している試行の履歴に基づき、有望そうな領域を推定し、その領域の値を実際に試すということを繰り返します。そして、新たに得られた結果に基づき、更に有望そうな領域を推定します。具体的には、Tree-structured Parzen Estimator というベイズ最適化アルゴリズムの一種を用いています。

Chainer との関係は?

Optuna は Chainer を含む様々な機械学習ソフトウェアと一緒に使うことができます。

Chainer は深層学習フレームワークであり、Optuna はハイパーパラメータの自動最適化フレームワークです。例えば、Chainer を用いたニューラルネットの学習に関するハイパーパラメータを最適化する場合、Chainer を用いるユーザーコードの一部に Optuna からハイパーパラメータを受け取るコードを書くことになります。それを Optuna に渡すことによって、Optuna が自動的に何度もそのユーザーコードを呼び出し、異なるハイパーパラメータによりニューラルネットの学習が何度も行われ、優れたハイパーパラメータが自動的に発見されます。

社内では Chainer と共に用いられているユースケースがほとんどですが、Optuna と Chainer は密結合しているわけではなく、Chainer の以外の機械学習ソフトウェアとも一緒に使うことができます。サンプルとして、Chainer の他に scikit-learn, XGBoost, LightGBM を用いたものを用意しています。また、実際には機械学習に限らず、高速化など、ハイパーパラメータを受け取って評価値を返すようなインターフェースを用意できる幅広いユースケースで利用可能です。

なぜ Optuna を開発したのか?

ハイパーパラメータの自動最適化フレームワークとして、Hyperopt, Spearmint, SMAC といった有名なソフトウェアが既に存在しています。そんな中でなぜ Optuna を開発したのでしょうか?

複数の理由やきっかけがありますが、一言で言うと、我々の要求を満たすフレームワークが存在せず、そして既存のものよりも優れたものを作るアイディアがあったからです。また、実際には、機能面だけではなく品質面でも、既存のフレームワークにはレガシーなものが多く、不安定であったり環境によって動作しなかったり修正が必要だったりという状況でした。

Optuna の特徴

Define-by-Run スタイルの API

Optuna は Define-by-Run スタイルの API を提供しており、既存のフレームワークと比較し、対象のユーザーコードが複雑であっても高いモジュール性を保ったまま最適化を行うことを可能とし、またこれまでのフレームワークでは表現出来なかったような複雑な空間の中でハイパーパラメータを最適化することもできます。

深層学習フレームワークには Define-and-Run と Define-by-Run という 2 つのパラダイムが存在します。黎明期は Caffe など Define-and-Run のフレームワークが中心でしたが、PFN の開発した Chainer は Define-by-Run のパラダイムを提唱し先駆けとなり、その後 PyTorch が公開され、TensorFlow も 2.0 では eager mode がデフォルトになるなど、今では Define-by-Run のパラダイムは非常に高く評価されており、標準的にすらなろうとする勢いです。

Define-by-Run のパラダイムの有用性は、深層学習フレームワークの世界に限られたものなのでしょうか?我々は、ハイパーパラメータ自動最適化フレームワークの世界でも同様の考え方を適用できることに気づきました。この考え方の下では、全ての既存のハイパーパラメータ自動最適化フレームワークは Define-and-Run に分類されます。そして Optuna は Define-by-Run の考え方に基づき、既存のフレームワークと大きく異なるスタイルの API をユーザに提供しています。これにより、ユーザプログラムに高いモジュール性を持たせたり複雑なハイパーパラメータ空間を表現したりといったことが可能になりました。

学習曲線を用いた試行の枝刈り

深層学習や勾配ブースティングなど、反復アルゴリズムが学習に用いられる場合、学習曲線から、最終的な結果がどのぐらいうまくいきそうかを大まかに予測することができます。この予測を用いて、良い結果を残すことが見込まれない試行は、最後まで行うことなく早期に終了させてしまうことができます。これが、Optuna のもつ枝刈りの機能になります。

Hyperopt, Spearmint, SMAC 等のレガシーなフレームワークはこの機能を持ちません。学習曲線を用いた枝刈りは、近年の研究で、非常に効果的であることが分かっています。下図はある深層学習タスクでの例です。最適化エンジン自体は Optuna も Hyperopt も TPE を用いており同一であるものの、枝刈りの機能の貢献により、Optuna の方が最適化が効率的になっています。

並列分散最適化

深層学習は計算量が大きく一度の学習に時間がかかるため、実用的なユースケースでのハイパーパラメータの自動最適化のためには、性能が高く安定した並列分散処理を簡単に使えることが必要不可欠です。Optuna は複数ワーカーを用いて複数の試行を同時に行う非同期分散最適化をサポートします。下図のように、並列化を用いることで最適化は更に加速します。下図はワーカー数を 1, 2, 4, 8 と変化させた場合の例ですが、並列化により最適化がさらに高速化されていることが確認できます。

また、Chainer の分散並列化拡張である ChainerMN との連携を容易にする機能も用意されており、最適化対象の学習自体が分散処理を用いるような場合にも Optuna を簡単に使うことができます。これらの組み合わせにより、分散処理が含まれた目的関数を並列に分散実行するようなこともできます。

ダッシュボードによる可視化(実装中)

最適化の過程を見たり、実験結果から有用な知見を得たりするために、ダッシュボードを用意しています。1 コマンドで HTTP サーバが立ち上がり、そこにブラウザで接続することで見ることができます。また、最適化過程を pandas の dataframe 等で export する機能もあり、それらを用いてユーザがシステマチックに解析を行うこともできます。

終わりに

Optuna は既に複数の社内プロジェクトで活用されています。例えば、今夏準優勝を果たした Open Images Challenge 2018 でも用いられました。今後も活発に開発は続けられ、完成度の向上と先進的な機能の試作・実装の両方を精力的に進めていきます。現段階でも他のフレームワークと比較し Optuna を利用する理由は十分存在すると我々は考えています。お試し頂きお気づきの点があれば忌憚のないフィードバックを頂ければ幸いです。

先日開催された第 21 回情報論的学習理論ワークショップ (IBIS’18) では、弊社でのインターンシップにおける成果であるハイパーパラメータ自動最適化に関する研究を 2 件発表しました。これらは Optuna を実際に利用している中で出てきた問題意識に基づいており、成果はいち早く Optuna に組み込むことを目指して取り組んでいます。こういった技術により Optuna を更に優れたものとしていければと考えています。

我々の目標は、深層学習関連の研究開発をできるだけ加速することです。ハイパーパラメータの自動最適化はそのための重要なステップとして取り組んでいますが、他にも既にニューラルアーキテクチャー探索や特徴量の自動抽出といった技術に関しても取り組みを開始しています。PFN では、こういった領域や活動に興味を持ち一緒に取り組んでくれるメンバーをフルタイム・インターンで募集しています

分散深層学習とモデル並列性

$
0
0

(本記事は、2016年インターンシップを経て現在はアルバイトとして勤務されている包さんによる寄稿です)

はじめまして。Preferred Networksの分散深層学習チームでアルバイトをしている包です。私は分散深層学習の中でも主にモデル並列に関する機能実装を行っています。今回はモデル並列性の概要と、ChainerMNにおいてどのようにモデル並列性を実現しているのかについて紹介します。

分散深層学習: データ並列性とモデル並列性

深層学習における各種フレームワークは目覚ましい発展を遂げ続けており、最近では一般ユーザーでも簡単に複数GPUを用いたニューラルネットの訓練ができるようになってきました。たとえば、ChainerMNではoptimizerの定義にほんの数行加えるだけでニューラルネットを複数GPUで訓練できます[1]。これにより1024GPU上でImageNetによるResNet-50の学習を15分で行うなどの実績を上げています[2]。このような複数プロセス、複数ノードを用いた分散深層学習によってニューラルネットの訓練は高速に行えるようになっており、分散深層学習は現在の深層学習の基盤を支えているといえます。

ところで、「分散深層学習」にはデータ並列とモデル並列という2通りのアプローチがあることが知られています[3]。データ並列では、全プロセスに同じモデルのコピーして訓練することでバッチサイズをプロセス数倍し、学習を高速化させる手法です。先程お話したImageNetの並列訓練もデータ並列による高速化の一例です。一方でモデル並列とは、1つのモデルを分割して複数のプロセスに配置し、全プロセスで協調して1つのモデルを訓練する手法です。主なユースケースとしては超解像度を入力とするCNNやMixture of Experts[4]など、1プロセス上に載りきらないサイズのモデルを訓練したい場合に用いられます。最近ではMesh-Tensorflow[5]というTensorflow用のモデル並列ライブラリが公開されましたが、現状ではモデル並列をサポートしているフレームワークは非常に少ないです。

この記事では、ChainerMNに実装されているモデル並列APIを、実例を交えて紹介します。特に、Define-by-Runとともにモデル並列を実現する際に発生する問題と、その解決方法について重点的にお話をします。

ChainerMNにおけるモデル並列性の実現

ChainerMNでは、通信をChainerの関数呼び出しによって定義 します。これにより非常に柔軟な通信パターンを実現することができます。

図1: 関数呼び出しによる通信の定義の例

ChainerMNにおける通信はMPIを用いて実現されており、モデル並列でも基本的にMPIの通信スタイルを踏襲しています。MPIでは大きく分けて MPI_Send を始めとした1対1通信と、 MPI_Bcast のような集団通信向けのAPIが提供されています。ChainerMNでは、これらの通信APIと対応するように chainermn.functions.sendchainermn.functions.bcast のように、Chainerの関数を提供しています。通信用の関数は、それぞれbackwardにおいて「勾配を逆向きに通信」するように設計されています。例えば bcast の場合、forward計算ではmasterからslaveに対して入力変数がbroadcast通信されます。一方で、backward計算ではslaveからmasterに対して勾配をallreduceします。

ChainerMNに実装されているforward通信に対応するbackwardの通信パターンは以下のようになります。

表: forward と backward における通信パターンの対応

forward backward
allgather allgather
alltoall alltoall
bcast allgather
gather scatter
scatter gather
send recv
recv send

 

次に、モデル並列APIの具体的な使い方について見ていきます。まず、データ並列の際と同様に、通信を行うためのコミュニケータを作成します。

comm = chainermn.create_communicator()

例えば、図1のようなモデルの実装イメージは次のようになります(図1のモデルに特に意味はありません)。

class ExampleModel(chainer.Chain):
    def __init__(self):
        self.comm = chainermn.create_communicator()
        self.conv = L.Convolution2D(...)

    def forward(self, x):
        x = chainermn.functions.bcast(self.comm, x)
        h = self.conv(x)
        y = F.relu(h)
        ys = chainermn.functions.gather(self.comm, y)
        ...

この例では、masterからブロードキャストされた変数が Convolution2D の入力になります。一方で、backward計算の際には、 Convolution2D の勾配が自動的に Bcast のbackwardによってmasterへ集約されます。

ChainerMNに用意されているAPIの詳細については、ドキュメントを参照してください[6]。なお、モデル並列関連のAPIに関しては現状では実験段階なので、将来的に後方互換でないAPIの変更が起こる可能性があります。

Define-by-Runにおける注意点(その1)

ChainerをはじめとしたDefine-by-Runによる計算グラフの定義はモデルを直感的に記述することができる点で優れているといえます。backward計算時には、出力変数からグラフのバックトラックを行うことによってパラメータの更新を行うことができます。しかし、モデル並列を実現するために上述のように通信を関数として定義すると、計算グラフが正しくバックトラックできない状況が発生します。

例えば、下記のような2つのプロセス間におけるシンプルな1対1通信の例を考えます。

図2: 1対1通信の例

「Process #0」に注目してみると、出力変数 y からバックトラックを行ったときに、 recv から send へ戻ることができません。その結果、「Process #1」は recv のbackward(すなわち勾配のsend)を呼んでいるにもかかわらず、「Process #0」は send のbackward(すなわち勾配のrecv)を呼ぶことができず、デッドロックが発生します。このような状況は、1つのプロセス上における計算グラフが非連結になっているときに生じます。そのため、 send 関数が戻り値として返す特別な変数を recv に渡すことによって、 計算グラフが連結になるようにモデルの定義を行います

図3: delegate variableによる計算グラフの連結化

このような sendrecv を繋ぐような send 関数の戻り値を、便宜的に「delegate variable」と呼ぶことにします。Delegate variableは「Process #0」においてグラフを連結にする役割を果たす他に、「Process #1」でもバックトラックの起点となるダミーの出力変数として振る舞います。図3をコードで記述すると以下のようになります。

class ExampleModel_0(chainer.Chain):
    def forward(self, x):
        # first component
        z = f(x)
        phi = chainermn.functions.send(z, comm, rank=1)

        # second component
        z = chainermn.functions.recv(comm, rank=1, delegate_variable=phi)
        y = h(z)

        return y

class ExampleModel_1(chainer.Chain):
    def forward(self, _):
        z = chainermn.functions.recv(comm, rank=0)
        z = g(z)
        phi = chainermn.functions.send(z, comm, rank=0)
        return phi

Define-by-Runにおける注意点 (その2)

先程の節ではグラフが非連結になると計算グラフのバックトラックができない例を1つ挙げました。このような例は他にも存在します。

 

図4: 1対1通信を2回呼ぶ例

 

図4では、1対1通信が2回発生しています。この場合、「Process #0」における send が返す2つのdelegate variableを適切に処理する必要があります。そこで、以下のように2つの変数を1つにまとめる処理を行います。

 

図5: pseudo_connectを用いた例

 

chainermn.functions.pseudo_connect という関数は、「delegate variableがあたかも別の変数であるかのように振る舞うような変数」を返す関数です。図5の例では、 \( \phi_1 \) というdelegate variableが実際には \( \phi_2 \) という別の変数として振る舞うような変数 \( \psi \) を返します。 \( \psi \) をバックトラックする際には、まず \( \phi_1 \) のバックトラックを行い、次に \( \phi_2 \) のバックトラックを行います。このようにして、backward計算の際に2つのdelegate variableを正しくトラックバックすることができます。図5をコードで記述すると次のようになります。

class ExampleModel_0(chainer.Chain):
    def forward(self, x):
        z1, z2 = f(x)
        phi1 = chainermn.functions.send(z1, comm, rank=1)
        phi2 = chainermn.functions.send(z2, comm, rank=1)
        psi = chainermn.functions.pseudo_connect(phi1, phi2)
        return psi

class ExampleModel_1(chainer.Chain):
    def forward(self, _):
        z1 = chainermn.functions.recv(comm, rank=0)
        z2 = chainermn.functions.recv(comm, rank=0)
        y = g(z1, z2)
        return y

図5では pseudo_connect で2つのdelegate variableをまとめましたが、次の図6のように通常の変数にdelegate variableを結合することも可能です。

図6: delegate variableと通常の変数を結合する例

 

y_ = chainermn.functions.pseudo_connect(phi, y)

以上がChainerMNにおけるモデル並列の概要になります。次に、実際のモデルの例を見てみます。

1対1通信を用いた例: encoder-decoderモデル

Encoder-decoderモデル[7]は可変長の入力を可変長の出力に変換することを目的としたモデルで、自然言語処理をはじめとした応用分野で広く用いられています。
Chainerのexampleにも機械翻訳の例があります[8]。Encoder-decoderモデルの入力や出力に画像を用いるようなモデルの場合、CNNをencoderやdecoderに用いることになりますが、層数やパラメータ数が膨大なencoderやdecoderになると、全体のモデルが1GPUに載らないケースが発生します。その場合、モデルをいくつかに分割して複数プロセスでモデル並列学習を行うことによって学習できます。例えば、下図のようにencoderとdecoderにそれぞれ1プロセスずつ割り当てるような分割が考えられます。

図7: encoder-decoderのモデル並列化

 

ここでは、はじめのプロセスでencodeしたcontext vectorをdecoderへ送信して、decoder側のプロセスでdecodeするように分割を行っています。例えばLSTMの場合はcontext vectorが2つあるので、2回の1対1通信を行うことで実現できます。ただし、図5の例と同様に、encoder側では pseudo_connect を用いてdelegate variableを1つにまとめる必要があることに注意してください。基本的には sendrecvpseudo_connect を用いれば実装することができますが、encoder-decoderモデルの分割は実装が煩雑になるので、専用のLinkを用意しています。

rnn = chainermn.links.create_multi_node_n_step_rnn(
        L.NStepLSTM(n_layers, n_units, n_units, 0.1),
        comm, rank_in=None, rank_out=1)

create_multi_node_n_step_rnn は、Chainerで提供されている NStepRNN [9](可変長系列をまとめて入出力するAPI)をラップして、内部で別のプロセスと自動的にcontext vectorを送受信します。rank_in に指定したプロセスからcontext vectorを受信し、 rank_out に指定したプロセスに対してcontext vectorを送信します。これを用いると、次のようにモデル並列なencoder-decoderモデルを簡単に実装することができます。

class Encoder(chainer.Chain):
    def __init__(self, comm, n_layers, n_units):
        super(Encoder, self).__init__(
            # Corresponding decoder LSTM will be invoked on process 1.
            mn_encoder=chainermn.links.create_multi_node_n_step_rnn(
                L.NStepLSTM(n_layers, n_units, n_units, 0.1),
            comm, rank_in=None, rank_out=1
            ),
        )
        self.comm = comm
        self.n_layers = n_layers
        self.n_units = n_units

    def forward(self, *xs):
        exs = f(xs)
        c, h, _, phi = self.mn_encoder(exs)
        return phi

class Decoder(chainer.Chain):
    def __init__(self, comm, n_layers, n_units):
        super(Decoder, self).__init__(
            # Corresponding encoder LSTM will be invoked on process 0.
            mn_decoder=chainermn.links.create_multi_node_n_step_rnn(
                L.NStepLSTM(n_layers, n_units, n_units, 0.1),
            comm, rank_in=0, rank_out=None),
        )
        self.comm = comm
        self.n_layers = n_layers
        self.n_units = n_units

    def forward(self, *ys):
        c, h, os, _ = self.mn_decoder(ys)
        ...

この例はChainerMNのexampleに公開されています[10]。

集団通信を用いた例: チャネル方向の並列化

集団通信を用いると、下図のようにCNNのチャネル方向の並列化が実現できます。この並列化は高解像度画像を扱う際や、バッチサイズを大きくする際に有用です。

図8: チャネル方向の並列化

 

各プロセスはCNNのチャネルのうち一部だけを入力としてとって畳み込みを行うので、各々のプロセス上のCNNのパラメータ数を減らすことができます。CNNの出力に対して “allgather“ を用いることで、全チャネルを集約することができます。実装のイメージは以下のようになります。

class ParallelConvolution(chainer.Chain):
    def __init__(self, comm, in_channels, out_channels):
        self.comm = comm
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.conv = L.Convolution2D(...)

    @property
    def _indices(self):
        # index % comm.size == comm.rankとなるインデックスのチャネルを担当
        # 例 (size=4, rank=1の場合): _indices = [1, 5, 9, ...]
        idx = numpy.arange(self.in_channels)
        return idx[idx % self.comm.size == self.comm.rank]

    def forward(self, x):
        # 当該プロセスの担当チャネルをスライス
        x = x[:, self._indices, :, :]

        y = self.conv(x)

        # 全チャネルを集約
        ys = chainermn.functions.allgather(self.comm, y)
        return F.concat(ys, axis=1)

この例はchainerMNのexampleに公開されています[11]。

まとめ

本記事では、ChainerMNにおけるモデル並列の実現と、実際の例をいくつか紹介しました。特に、Defined-by-Runの下では計算グラフが連結でなければならないため、delegate variableやpseudo_connectなどのテクニックが必要になります。今回はスペースの都合で紹介がかないませんでしたが、特定のタイプのモデル向けによりシンプルにモデルを定義できるようなAPI( MultiNodeChainList, MultiNodeNStepRNN)も用意されているので、お手軽に試してみたい方はぜひドキュメント[6]をご覧ください。

参考文献


プログラミング教育推進月間の教材について

$
0
0

PFNフェローの丸山です。2月18日に、PFNは文部科学省、総務省及び経済産業省の「未来の学び プログラミング教育推進月間」に協力して、小学校向けのプログラミング教材を作成することを発表しました。この教材は、今年の9月に一部の小学校で、総合学習の一環として利用されることを目指しています(指導案のページはこちらです)。この記事では、私達PFNがなぜこのような活動をしているかをお話ししたいと思います。

PFNは若い会社です。多くの若い社員が次々に家庭を持ち、子どもを育て始めています。社長の西川をはじめ皆、次の世代が活躍し、よりよい社会を作っていくことを強く願っています。これからの社会を考えたとき、マーク・アンドリーセンが「ソフトウェアが世界を侵食する」(Software is eating the world) と言ったことに象徴されるように、社会の価値の多くが情報技術、特にソフトウェアから得られることは明らかです。ですから、私達の次の世代の誰もが、小さい頃から情報技術に親しみ、プログラミングの楽しさを知る機会を持てることは、私達にとっても大変喜ばしいことです。そんな若い人たちが、ソフトウェアに興味を持ち、将来社会のあらゆる場で活躍している、そんな社会の実現をPFNは願っています。

新しいスタイルのプログラミング

同時に私達は、技術の進歩によって、今までとは違う新しいスタイルのプログラミングが現れつつあることも強く認識しています。簡単にするため、プログラムとはある入力Xに対して出力Yを計算する箱であると考えます。

このようなプログラムを作る1つの方法は、計算のルールを書き下すことです。たとえば、商品の価格を入力としてその消費税を出力するプログラムを考えましょう。このようなプログラムは、入力Xに対して「X の0.08倍を計算してYとせよ」 というルールで表現することができます。これが普通のプログラムの作り方で、ここではルールによるプログラミングと呼ぶことにしましょう。

しかし、深層学習という新しい技術によって、別の形のプログラミングが現れてきました。こんな例を考えてみましょう。人とじゃんけんをする機械を作るために、カメラで撮った手の画像を入力として、それがグー・チョキ・パーのいずれであるかを判定して出力するプログラムを作りたいとします。

このようなプログラムを、ルールによるプログラミングで作るのは容易ではありません。カメラで撮影した画像は画素が格子状に並んだものですが、ある画素が肌色だからこれはチョキだ、と判断するわけにはいきません。同じチョキでも位置や角度や光源が違ったりして毎回異なる画像になるからです。

そこで、深層学習では、様々に異なるチョキの画像をプログラムに見せて「これはチョキだよ」と教えていくことによってプログラミングを行います。これを例示によるプログラミングと呼ぶことにします。例示によるプログラミングでは、ルールを書くのが難しいようなプログラムも作ることができます。

一方で、例示によるプログラミングでは、例示に使うデータによっては、必ずしも毎回正解が出ないかもしれません。あるいは例示に偏りがあった場合には、偏りのある結果が出るかもしれません。これは、ルールによるプログラミングが(プログラムに誤りが無い限り)常に正しい答えを出すこととは対照的です。

将来のソフトウェア

例示によるプログラミングは、ここ10年ほどの、深層学習の急速な発展によって可能になってきていて、今までのルールによるプログラミングでは難しかった画像認識、音声認識、機械翻訳などに応用されつつあります。これは、1950年代にデジタル計算機が発明されて以来の最大のパラダイムシフトかもしれません。おそらく、将来のソフトウェアの多くは、ルールによるプログラミングと例示によるプログラミングを組み合わせたハイブリッドなものになるでしょう。

私達が今回の「未来の学び プログラミング教育推進月間」にご協力している真の理由はここにあります。今の子供達が大人になって、社会におけるソフトウェア開発の一翼を担うころには、例示によるプログラミングが広く使われていることは間違いありません。ルールによるプログラミングが苦手でも、例示によるプログラミングは得意だ、という子どももいるでしょう。

「プログラミング」を狭く捉えないで、いろいろな考え方があるのだ、ということを知ってほしい、それが私達の願いです。

 

GraphNVP

$
0
0

本記事は、2018年インターンシップ・PEとして勤務した Kaushalya Madhawa さんによる寄稿です。
本記事はこちらの英語ブログの日本語訳です。

本記事では、私たちが最近投稿した論文 “GraphNVP: An Invertible Flow Model for Generating Molecular Graphs” を紹介します。
コードも公開しています → Github repo

分子の生成モデル

望ましい薬理学的な物性値をもつ新しい分子の発見は創薬の分野において重要な問題です。これまで、候補となる化合物を実際に合成して実験を行うといったことがされてきました。
しかし、化合物のとりえる形の可能性は膨大でそれらを合成し、実験するということはとても時間がかかります。
このように望む物性値をもつ分子を探す代わりに、”de novo drug design” では、新しい化合物を興味対象とする物性値とともに設計するということを行います。

近年の深層学習の技術発展、特に深層生成モデルの分野は “de novo drug design” にとって重要な技術となってきています。

分子の表現方法

深層学習で分子の生成モデルを考える際、初めの重要なステップはどのように化合物を表現するかということです。
初期の研究では SMILES という、文字列ベースの表現方法を採用していました。
これらの研究は、 RNN ベースの言語モデルや、Variational AutoEncoder (VAE) を用いることで、SMILES の文字列を生成しそれを分子に変換します。
このアプローチの問題点はSMILES 文字列での小さな変化が分子全体でみると大きく変化するような場合があるということです。
そこで、分子をグラフを用いて表現しようというアプローチが出てきました。この問題は “molecular graph generation” として扱われます。

分子は無向グラフとして表現されます。原子をノード、結合 (bond) を辺に対応させます。この表記を用いると分子の構造・結合情報は Adjacency tensor (隣接テンソル) \( A \) として、また各ノードの原子(酸素、フッ素など)を node feature matrix \( X \) で表すことができます。この定式化の下で、分子の生成問題はグラフの生成問題として扱うことができ、これまでに技術発展してきた GANやVAEといった深層学習のモデルを用いることができます。さらにグラフの生成問題は2つのタイプに分類することができます。1つめは分子のグラフを”順番に” 生成する方法で ノード (原子) や 辺 (結合) を1つずつ生成していきます。もう1つの方法が直接グラフを生成するタイプで、画像の生成と似たように一度に全体を生成します。

可逆性

上記で紹介したVAEやGANと比較して、可逆な Flow を用いたモデルは尤度の最大化を直接行えるという長所があります。

さらに、Flow モデルは可逆な変換のみで構成されているので、逆変換が可能で100% 分子→潜在変数→分子 の再構成を行うことができます。

GANのみの生成モデルなどEncoder がない場合は、特定の分子を操作して生成・最適化を行うことは困難です。例えば、特定のベースとなる分子 (query) に似ている分子を生成して最適化を行っていくということが (創薬の分野で Lead optimization と呼ばれる) 困難です。一方Flow モデルは 分子の潜在変数を直接計算できるので、query 分子に対する潜在変数を簡単に求めることができそこから最適化を行うことも可能です。

提案モデル

model_reverse

提案モデルであるGraphNVPは上図のような構成をとります。GraphNVPは私たちの知る限りではOne-shot Graph生成モデルとして初めてFlow を用いたモデルです。
このモデルは辺に対応する変数とノードに対応する変数の2つの潜在変数を使用し、グラフ構造や原子種類の分布を表現できるようにします。
これらのをFlowの定式下で計算できるよう、 Adjacency Coupling および Node Feature Coupling と呼ばれる2つのCoupling layerを提案しました。
グラフの生成を行う際は、まずAdjacency tensorを生成し、次に Node feature tensor を graph convolutional network を用いて生成します。

結果

訓練データから分子をとり、その潜在変数 \( z_0 \) をGraphNVPで計算します。そして潜在空間上でランダムに選んだ2つの方向の軸に対して \( z_0\) が中心となるような2次元グリッドを構成し、その各点で潜在変数をデコードして分子を生成したものが下図となります。
下図の可視化結果では、似たような分子が並んでおり、隣どおしでは少しの原子が変わっているだけというようなものとなっており、提案モデルがスムーズな潜在空間の学習をできていることが見て取れます。

zinc_neighborhood_2d

 

 

さいごに:メンターより

Kaushalyaさんのメンターを担当した、中郷・石黒です。
今回の研究は2018年夏のインターンシップから始めたものです。このころはGraphの生成モデルの研究が盛んになり様々なアプローチでの生成モデルが提案され始めたころでしたが、まだFlowを用いたグラフの生成モデルはないので取り組んでみたいというKaushalyaさんの持ち込みからはじまったものでした。

グラフ生成モデルとしては初めての取り組みであり、またFlowを用いるモデルはかなり深いネットワークを使用する必要があり計算量も大きくなるということで、研究には時間がかかりましたが、最終的には論文として形にすることができ、コードも公開することができました。

最後に宣伝となりますが、PFNでは今回の “Drug Discovery / Material Discovery” の分野だけでなく、多種多様な業界で機械学習適用の横断プロジェクトを実施しており、中途・新卒の人材募集も通年で行っております!
興味のある方はぜひこちらのページをご覧ください。

再計算でニューラルネット学習時のメモリ消費を減らす

$
0
0

エンジニアの楠本です。深層学習で再計算と呼ばれる手法を使って学習時のメモリ消費を削減する研究や実装に取り組んでいるのでその紹介をしたいと思います。

背景

大規模なニューラルネットの学習ではしばしば誤差逆伝播(以下同様)で GPU のメモリ不足に陥ることがあります。

通常、誤差逆伝播ではパラメータについての勾配を求める際に必要な順伝播の計算結果を (途中の計算結果も含めて) すべて覚えた状態で勾配計算を行います。

一方で、例えばコンピュータビジョンの重要なタスクであるセグメンテーションや物体検出では入力画像として高解像度のものがしばしば扱われます。モデルについても高精度を達成するために複雑なネットワーク設計、すなわち層が深くまた中間表現のチャンネル数の多いネットワークが使われることが少なくありません。

このように入力やモデルが巨大である場合には記憶しておくべき途中の計算結果全体が巨大になり、学習中のメモリ不足に繋がります。

GPU のメモリサイズはハードウェアの進歩で大きくなってはいるものの、大規模な学習には足りないことがあります。現状で商用販売されているGPUのメモリは最もハイエンドな Tesla V100でも最大 32 GB であり、大規模な学習ではメモリ不足を回避するためにバッチサイズをかなり小さい値にしなければいけないことがあります。バッチサイズを小さくすることは Batch Normalization で使われる統計情報推定を不正確にし、モデルの精度低下につながることが検出等のタスクで知られています[1]。

メモリ不足は深層学習の根幹的な問題であるため様々な解決方法が試されています。例えば半精度浮動小数点数 (FP16) やネットワークのサイズ削減などはその一例でしょう。しかしこれらは本来学習したいモデルに直接変更を加えることになるため、予測精度を悪化させることに繋がりえます。これから紹介する再計算と呼ばれる手法を使うとモデルの予測精度を変えることなくメモリを削減することができます。この場合、精度ではなく、学習時の計算時間が増えることを引き換えにします。

逆誤差伝播法の復習

ここで少し順番が前後しますが、ニューラルネットの学習方法である誤差逆伝播法について今一度復習します。

ニューラルネットワークは変数と計算の順序関係を示す計算グラフによって表現できます。この計算グラフをどう表現するかはいくつか流儀がありますが、ここでは計算グラフは変数を頂点とするグラフとします。これには入力変数、中間変数、出力変数を含みます。変数から変数の間には直接的な依存関係がある場合に枝が生えているものとします。

誤差逆伝播法は入力変数(モデルパラメータを含む)に対してその勾配を求めるための方法です。誤差逆伝播法の計算は多変数関数のチェインルールに基づいて計算されます。一般に勾配計算ではネットワークの出力を y として、それぞれの変数 z に対して勾配 ∂y/∂z を求めるのが目的です。これは∂y/∂y=1 から出発して再帰的に勾配を求めることができます。いま、z=f(x) のような関係があるときに ∂y/∂z を表すテンソルがわかっているとすると ∂y/∂x = ∂y/∂z ・ ∂z/∂x = ∂y/∂z ・ F(x) (ここで、F(x) := ∂f(x)/∂x とした) となるため、f に対してその勾配関数 F を事前に計算できる状態にしておけば勾配を計算できます。計算グラフの観点からすると、元の計算グラフ (順伝播部分と呼ぶことにします) から勾配の計算部分(逆伝播部分)を足していることになります。例えば3層のニューラルネットの順伝播部と逆伝播部は以下のような図になります (簡単のため、∂y/∂z を gz のように記しています) 。

再計算

計算グラフは勾配計算のための実行手順を与えてくれますが、これをそのまま実行すると順伝播部分での計算結果は逆伝播時に基本的にすべて必要となるため、単純に中間結果もすべて記憶しておくと、大規模学習ではメモリが足りなくなることがあります。しかしよく考えると順伝播ですべてを記憶せずに一部の中間結果を破棄したとしても、残りの中間結果からもう一度順方向に計算して必要な中間結果を復元さえできれば、逆伝播時に勾配計算を行うことができます。これにより計算のオーバーヘッドが発生する代わりにピーク時のメモリ消費を下げることできます。

このような手法を再計算あるいはチェックポインティング (checkpointing) と呼びます。再計算自体はニューラルネット固有の手法ではなく、自動微分のコミュニティで研究されていました[2][3]。再計算はメモリ消費を抑える代わりに追加の計算時間を発生させます。どの変数をどのタイミングで捨てるかという戦略によってメモリ消費とオーバーヘッドは変わります。近年になってディープラーニングの問題設定に特化した再計算手法が提案されるようになりました[4][5]。

ここではその一つである Chen らの手法 [4] を紹介します。簡単のため、計算グラフが n 層の直線的なネットワークになっている場合を考えます。実際の計算ではモデルパラメータが付いているかもしれませんが一旦無視します。いま、グラフを √n 個ごとに切って √n 個のブロックに分けたとします。順伝播ではそれぞれのブロックを計算した後にブロック間の境界となる部分の変数以外をメモリから捨てることにします。逆伝播では捨てた部分が必要になってしまいますが、残しておいた部分を起点として順伝播のブロックを一時的に復元することでそれぞれのブロック内で逆伝播を実行できます。これにより順伝播部分で再計算のオーバーヘッドが順伝播1回分だけ掛かる代わりに、メモリ消費を O(n) から O(√n) 程度に減らすことができます。ResNet のようにスキップ接続がある場合でも、関節点等でグラフを切れば似たようなことができます。

グラフ的形式化による再計算 (我々の提案手法)

ここからは我々が少し前に arXiv に投稿した論文である “A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation” の紹介をします。こちらは2018年夏PFNインターンの井上卓哉さんとの研究成果でもあります。

深層学習で知られている再計算手法は適応可能範囲が計算グラフが限定的で、やや砕けた表現をすると「グラフが直線っぽい場合」に特化していました。しかし近年着目されているネットワークには U-Net のように大きなスキップ接続が存在したりして多様な構造を持っています。また、メモリと計算時間について良いトレードオフを取るという点も大事です。つまりメモリ不足がそこまで深刻でない状況ではできるだけオーバーヘッドを少なくするような再計算スケジュールを求めたいはずです。

そこで我々の論文では、任意の構造の (静的な) 計算グラフ *1 と利用可能なメモリ容量が与えられたときに、メモリ容量を超えない範囲でできるだけオーバーヘッドを小さくするスケジュールを求める離散的な最適化問題を考えます。

任意のグラフに対する再計算も、Chen らの手法の核である「グラフをブロックごとに切ってそれぞれのブロックごとに順伝播、再計算、逆伝播を行う」という考えを拡張できます。すなわち、元の計算グラフの頂点集合 V を V1, V2, …, Vk というブロックに分割し、V1→V2→…→Vk と順伝播計算するものだとします。するとこのような分割方法に対してそれに付随する再計算方法も自然に定まります。砕けた言い方をすると、順伝播で各ブロックを計算し終えた後には境界となるところをだけを覚えて、そうでないところは捨て去るようにします。逆伝播では忘れたところを復元します。よって分割方法を決めればそれに付随する自然な再計算方法の消費メモリとオーバーヘッドが定まります。

分割方法は残念ながら指数的に多く存在するので全探索などはできそうにないですが、もし分割列の途中状態の集合 (V1∪…∪Vi) としてありうるパターン数が少ないのだとすると動的計画法によって最適化問題の解を用いて求めることができます。パターン数が多いときでも、近似的に解くことで現実的に性能の良い解を求める方法も提案しています。

実験では PSPNet, ResNet, DenseNet, U-Net などのネットワークに対して提案手法を用いると計算時間が1.3~1.4倍程度になる代わりに40%-80%のメモリ削減を実現できることや、メモリに余裕がある場合には既存手法よりも計算時間のオーバーヘッドを小さくできることを確認しています。

*1 RNN のようなループを含む計算グラフであっても、ループ回数がイテレーションごとに固定であればループを展開して静的なグラフとみなせます。

Chainer-compiler 上での実装

まだ実験的な段階ではありますが、再計算手法を Chainer の学習で使えるようにする取り組みをしています。再計算では事前に計算グラフの構造が分かっている必要があるため、Chainer 本体ではなく計算グラフのコンパイラである Chainer-compiler 上でその実装を進めています。学習させるときの流れは以下のようになります。

  1. まず Python で記された Chainer のモデルを静的な計算グラフとして ONNX 形式にダンプします。これは ONNX-chainer を使えばできます。
  2. ONNX 形式の計算グラフを Chainer-compiler に渡すと学習のための逆伝播部分を足して勾配計算を実行可能な形式にします(Python からは `chainer.Chain` でラップされた状態で見られます)。オプション次第で再計算を含めたスケジュール生成を自動で行います。

Chainer-compiler には Python ラッパーがあり、元の Python コードに少し変更を加えるだけで使えるような形になっています。もし試してみたい方がいらっしゃったらドキュメントの Train your model with chainer-compiler を参考に実行してみてください。

まとめ

深層学習における再計算という手法の紹介と PFN での取り組みについて紹介しました。メモリ不足が深層学習研究開発のボトルネックにならない世の中が来ると素敵なのかもしれません。

ちなみに手動スケジューリングでいいのであれば、Chainer なら functions.forget を使うと比較的カジュアルに再計算ができます。

文献

[1] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu, and Jian Sun. MegDet: A large mini-batch object detector. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6181–6189, 2018.

[2] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algorithmic differentiation. Vol. 105. Siam, 2008.

[3] Benjamin Dauvergne and Laurent Hascoët. The data-flow equations of checkpointing in reverse automatic differentiation. International Conference on Computational Science. Springer, Berlin, Heidelberg, 2006.

[4] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. arXiv preprint, arXiv:1604.06174, 2016.

[5] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-efficient backpropagation through time. In Advances in Neural Information Processing Systems (NIPS), pages 4125–4133, 2016.

化学反応におけるDeep learningの適用

$
0
0

近年様々な分野に対してDeep learningの応用が研究されてきています。

化学の分野でも物性値の予測モデルや、化合物の生成モデルの研究などが盛んになってきています。最近では、有機化合物の合成を行う際に必要な化学反応の予測をDeep learningで行うという試みが行われてきているのでその先行研究サーベイをしました。

サーベイ資料はこちらのSlideshareにアップロードしています。

 

問題設定:反応予測および逆合成経路探索

化学反応で、反応物 (reactant) AとBを触媒 (reagent) Cの下で反応させたときに 生成物 (product) D ができたようなプロセスは Reaction SMILES を用いると “A.B.C>>D” というように表すことができます。

 

 

ここで、 AとBとC から何ができるか? (答えはD)を予測する問題を順方向の反応予測問題と呼び、Dを作るためには何を用いればよいか? (答えはA, B, C)を予測する問題を逆方向と呼ぶことにします。

一般的に、A, B, Cを与えた時に順方向でどういった反応が起こるかは限定されていますが、ある生成物 Dを作る方法は複数可能性がある場合があり、逆方向の解析の方が難しい問題です。

例えば創薬など、目的の性質を持つある有機化合物が先に決まっていて、それを工業的に合成するためにどういった反応物を用いればいいか知りたい場合は、逆合成解析 (retrosynethetic analysis)・逆合成経路探索が必要となります。

機械学習で予測モデルを作る際、順方向の予測問題は実際にデータセットにある反応で生成物が当てられたかどうかの精度で評価することができますが、逆方向の予測問題はデータセットにはないが現実で起こりうる反応物の組み合わせに分解することもできるため評価も難しいです。今回読んだ論文では、既に知られている化合物の合成プロセスを見つけることができたかどうか?で、逆合成経路の性能評価を行っていました。

 

研究動向

従来は、機械学習を用いるのではなく、反応パターンを事前に人が定義しておいて、そのパターンに当てはまるかどうかをルールベースで計算することで反応の予測計算をしていました。しかし、この方法では以下の問題があります

・反応パターンとして事前定義したパターンの適用しかできず、複数パターンにマッチした場合の優先度決めが難しい(精度面)

・パターンのマッチにはグラフのサブグラフマッチングが必要で計算が重い(速度面)

 

そこでデータドリブンで反応を扱う取り組み、特に深層学習を用いるアプローチが考えられ始めました。

2016年頃は合成ルール等をある程度制限し、限定された合成ルールに対して機械学習を適用するといったアプローチが主でした。(上図、一番左側)

これまではそもそも研究用途に使えるデータが整備されておらず、一部の研究機関のみがClosedで研究しているような状況でしたが、最近 アメリカのパテントから化学反応を集めて整備した、USPTOデータセットが公開され、順方向の反応予測に適用されました。

データセットが公開された2017年頃から一気に、Deep learningの適用により順方向の予測精度をあげる研究が盛んになってきました。(上図、真ん中・右側)

現在、2通りのアプローチが競争している状況です。

1.分子をグラフとみなして Graph Convolutionモデルを用いるアプローチ

2.分子をSMILES記法の文字列で表現してNLPの分野で発展した自然言語処理モデル(seq2seq、Transformer)を用いるアプローチ

(それぞれ手法の詳細は割愛します、SlideShare でご覧ください。)

 

どちらのアプローチも高精度で反応を予測できるようになってきており、すでに化学研究者よりもきちんと反応を予測できるという報告もあります (下図は Jin et al. より)

 

現時点では MolecularTransformer という自然言語処理側のモデルがSoTAを達成しているようです。IBM RXNとしてWebサービスでも公開されています。

上記のように順方向の反応予測は精度が向上してきており、今後の課題・発展として逆方向経路探索への適用や合成可能性を考慮した生成モデルの研究などがあげられます。

 

さいごに

今回紹介したような領域では、反応・合成の知識(化学側)と研究スピードの速いDeep learningの最先端の知識(コンピュータ側)双方を深く理解する必要があり、画像などの領域と比べるとまだ参入者がそれほど多くない印象です。

しかし、徐々に論文や公開実装も出てきており、このような領域でもDeep learningの技術優位性がでるかどうかの研究はこれからどんどん盛んになっていくのではないかと感じています。

視覚からの触覚特性の推定 (ICRA2019 Best Conference Paper Award Finalist)

$
0
0

リサーチャーの高橋城志(Takahashi Kuniyuki)です.

2019年5月にロボティクス分野のトップ会議であるICRA2019が開催されました.そこに投稿された約2900件の論文から3件だけ選ばれるBest Conference Paper Award Finalistを受賞しました.この論文はリサーチャーのJethro Tanと執筆したもので,その紹介をします.論文,動画,データセットは下記から閲覧できます.

論文タイトル:Deep visuo-tactile learning: Estimation of Tactile Properties from Images

論文のリンク:https://arxiv.org/abs/1803.03435

データセット:https://github.com/pfnet-research/Deep_visuo-tactile_learning_ICRA2019

論文の動画:https://www.youtube.com/watch?v=ys0QtKVVlOQ&feature=youtu.be

視覚からの触覚特性の推定

 Fig. 1に物体の写真を何枚か載せています.人は物体の表面を触ることで,柔らかさや粗さといった触覚特性を知覚することができます.また,画像だけから触覚の特性とその度合い(e.g. 柔らかさとその程度)を推定できます.この能力は物体操作や歩行方法などの判断に必要になります.例えば,柔らかそうなものは優しく把持を行い,滑りそうな床では気をつけて歩くなどです.

Fig. 1 視覚からの触覚特性の推定

関連研究

 これまでの方法では,触覚特性やその度合を手動でラベル付けする,教師あり学習がほとんどでした.しかし,この方法では手動でつけられたラベルの種類や粒度に結果が依存することになります(Fig. 1).特性の種類(e.g. 柔らかさ,滑らかさ,べたつき)やどの程度の粒度を用意するかは事前に決めなければならなず,手動でのラベル付けで想定していない未知の物体や粒度に対しては,既存のラベルに割り振られてしまうという課題があります.

Deep visuo-tactile learning

 そこで,手動でのラベル付けをせずに,教師なし学習で触覚の特徴を獲得する,deep visuo-tactile learningを提案します(Fig. 2).このモデルはエンコーダ・デコーダ型の深層学習の入力を画像情報,出力を触覚情報を用いており,潜在変数に触覚特性を獲得させます.出力は教師信号がある教師あり学習ですが,潜在変数には教師がないため,触覚特性の獲得に関しては教師なし学習です.

Fig. 2 Deep visuo-tactile learning

 このモデルの学習後,潜在変数に触覚特性が連続値として表現されることになります.そのため,度合いの粒度を事前に決める必要がありません.物体の触覚特性の推論には,対象となる物体の画像を入力するだけで物体の触覚特性である潜在変数が得られます(Fig. 3).つまり,触覚センサは学習にのみ必要で,学習後の推論には触覚センサを必要としません.触覚センサは高価で壊れやすいため,触覚センサを使わずに触覚の特性を推論できるという利点があります.さらに,シミュレーションでは接触状態を扱うのが困難で,触覚情報を扱うことは難しいですが,本手法ではシミュレーションでの画像から触覚情報の推定も可能となります.

Fig. 3 学習後のDeep visuo-tactile learning

データセットの作成

モデルの評価のため,25種類の物体を用いて,新たなデータセットを作成しました(Fig. 4).このデータセットは公開していて,自由に使用できます.
https://github.com/pfnet-research/Deep_visuo-tactile_learning_ICRA2019
実験には,Sawyerと呼ばれる7自由度の腕を持ったロボット,及び,その手先にウェブカメラとuSkinと呼ばれる触覚センサを取り付けたものを使用しました.uSkinは16点のそれぞれのセルで圧力方向とせん断方向の力を取得できます.ロボットは物体表面をなぞる動作を行い,そのときの画像と触覚センサのデータを取得します.実際に取得した時系列における触覚センサの各セルの圧力方向とせん断方向の力のグラフをFig. 4に示します.

Fig. 4 データセット作成

評価実験:潜在変数の可視化

 作成したデータセットを学習させて,触覚センサの特性が表現されている潜在変数を可視化したものをFig. 5に示しています.図中の赤色の星は学習に使用した物体で,青色は学習に使用していない未知物体です.取得した触覚センサの値から,物体の摩擦が大きいほど緑色の円の色が濃くなるように描画しています.Fig. 5から布でない物体はLatent varialbe 1の軸の低い値にプロットされる一方,布の物体は高い値でプロットされていることが分かります.これは,触覚センサの表面を布で覆っていたため,触覚センサ表面の布と布の物体との摩擦が大きくなったためだと考えられます.このことから,潜在変数には摩擦情報が表現されていることが示されました.

Fig. 5 摩擦を表現したLatent Variable

 Fig. 5と同じ方法で,センサ情報から硬くて粗い物体ほど円の緑色が濃くなるように描画したものをFig. 6に示しています.図から硬くて粗い物体であるほど,Latent variable 2の軸において小さな値にプロットされていることが分かります.例えば,カーペットは硬くて粗いですが,バスタオルは柔らかくて滑らかと認識されています.また,色のみ異なる物体や似ている物体は近い位置でプロットされていることが分かります.このことから潜在変数に触覚の特性として柔らかさと硬さが表現されていることが示されました.

 本手法の性能限界を調べるため,紙に印刷された畳の画像から触覚特性を推論させました.その結果,印刷された畳は硬くて粗い物体と認識されていますが,本来推定するべきものは紙であるため,実際の特徴とは異なります.今回の手法では入力としては画像のみを使ったために生じた問題です.深さ情報まで含めた入力にすることで,物体表面の形状情報が取得できるようになるため,このような問題を解決できると考えています.

Fig. 6柔らかさと粗さを表現したLatent Variable

まとめ

画像からの触覚特性とその度合を推定するために,教師なし学習であるdeep visuo-tactile learningを提案しました.この研究の新規性は,教師なしで潜在変数に触覚特性を表現したこと,及び,画像と触覚情報を含んだ新たなデータセットを作成したことです.今後の展望として,推定した触覚特性を元にロボットに把持や歩行などの行動をさせることです.

Viewing all 45 articles
Browse latest View live